andylizf's picture
Upload folder using huggingface_hub
5fed0fc verified
import argparse
import json
import os
import sys
import traceback
import importlib.util
import pandas as pd
import gc
from typing import Any, Mapping, Tuple, List, Optional
def _is_number(x: Any) -> bool:
try:
float(x)
return True
except (TypeError, ValueError):
return False
def _to_float(x: Any, default: Optional[float] = None) -> Optional[float]:
if x is None:
return default
try:
return float(x)
except (TypeError, ValueError):
return default
def _is_correct_value(v: Any) -> bool:
"""
Treat >0 numeric as correct; otherwise truthy strings/bools as correct.
"""
if _is_number(v):
try:
return float(v) > 0.0
except Exception:
return False
return bool(v)
def compute_oracle_stats(query: Mapping[str, Any],
tier_to_model: Mapping[str, str]) -> Tuple[str, float]:
"""
Pick the lowest-cost model (among tier_to_model.values()) that answered correctly.
"""
best_model = "no_model_correct"
best_cost = float("inf")
for model in tier_to_model.values():
if not _is_correct_value(query.get(model, 0.0)):
continue
cost_key = f"{model}|total_cost"
cost = _to_float(query.get(cost_key, None), default=None)
if cost is None:
continue
if cost < best_cost:
best_cost = cost
best_model = model
if best_model == "no_model_correct":
return "no_model_correct", 0.0
return best_model, best_cost
class Evaluator:
def __init__(self, problem_dir: str):
self.problem_dir = problem_dir
self.resources_dir = os.path.join(problem_dir, "resources")
# Check mounted datasets directory first (from main repo datasets folder)
mounted_datasets_dir = "/datasets/llm_router"
if os.path.exists(mounted_datasets_dir) and os.listdir(mounted_datasets_dir):
self.datasets_dir = mounted_datasets_dir
else:
# Fallback to resources/datasets if mounted directory doesn't exist
self.datasets_dir = os.path.join(self.resources_dir, "datasets")
ordered_names = ["routerbench_0shot_test.csv"]
self.trace_files = [
os.path.join(self.datasets_dir, name)
for name in ordered_names
if os.path.exists(os.path.join(self.datasets_dir, name))
]
def evaluate(self, solution_module_path: str) -> dict:
LAMBDA = 150.0
CANDIDATE_MODELS = ["cheap", "mid", "expensive"]
# update based on dataset config
TIER_TO_MODEL = {
"cheap": "mistralai/mistral-7b-chat",
"mid": "mistralai/mixtral-8x7b-chat",
"expensive": "gpt-4-1106-preview",
}
# load solution and solver
spec = importlib.util.spec_from_file_location("solution", solution_module_path)
solution = importlib.util.module_from_spec(spec)
spec.loader.exec_module(solution)
if not hasattr(solution, "Solution"):
return {"score": 0.0, "runs_successfully": 0.0, "error": "Missing Solution"}
solver = solution.Solution()
total_queries = 0
total_correct, oracle_correct = 0, 0
total_cost, oracle_cost = 0.0, 0.0
for csv_path in self.trace_files:
dataset_name = os.path.basename(csv_path)
# load dataset
df = pd.read_csv(csv_path, low_memory=False)
for _, row in df.iterrows():
# call solver
chosen_tier = solver.solve(
query=row["prompt"],
eval_name=row["eval_name"],
candidate_models=CANDIDATE_MODELS,
)
if chosen_tier not in CANDIDATE_MODELS:
chosen_tier = "cheap"
# obtain cost
model_name = TIER_TO_MODEL[chosen_tier]
cost_col = f"{model_name}|total_cost"
try:
cost = float(row[cost_col])
except Exception:
cost = 0.0
# obtain correctness
# oracle = row.get("oracle_model_to_route_to", "")
# oracle_cost_sample = float(row.get(f"{oracle}|total_cost", 0.0))
oracle, oracle_cost_sample = compute_oracle_stats(row, TIER_TO_MODEL)
if isinstance(oracle, str) and oracle.strip() == "no_model_correct":
correct = 0
cost = 0.0
oracle_correct_sample = 0
else:
oracle_correct_sample = 1
try:
correct = int(float(row[model_name]))
except Exception:
correct = 0
total_queries += 1
total_correct += correct
oracle_correct += oracle_correct_sample
total_cost += cost
oracle_cost += oracle_cost_sample
# Release memory
del df
gc.collect()
# compute final score
if total_queries == 0:
return {"score": 0.0, "runs_successfully": 0.0, "error": "Empty dataset"}
accuracy = total_correct / total_queries
avg_cost = total_cost / total_queries
raw_score = accuracy - (LAMBDA * avg_cost)
oracle_accuracy = oracle_correct / total_queries
oracle_avg_cost = oracle_cost / total_queries
oracle_raw_score = oracle_accuracy - (LAMBDA * oracle_avg_cost)
score = (raw_score / oracle_raw_score) * 100 if oracle_raw_score > 0 else 0.0
return {"runs_successfully": 1.0,
"total_queries": total_queries,
"score": score,
"raw_score": raw_score,
"accuracy": accuracy,
"avg_cost": avg_cost,
"oracle_raw_score": oracle_raw_score,
"oracle_accuracy": oracle_accuracy,
"oracle_avg_cost": oracle_avg_cost,
"lambda": LAMBDA,
}
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--solution", required=True)
parser.add_argument("--out", required=True)
args = parser.parse_args()
try:
problem_dir = os.path.dirname(os.path.abspath(__file__))
result = Evaluator(problem_dir).evaluate(args.solution)
except Exception as e:
print(f"[evaluator] ERROR: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
result = {"score": 0.0, "runs_successfully": 0.0, "error": str(e)}
os.makedirs(os.path.dirname(args.out) or ".", exist_ok=True)
with open(args.out, "w") as f:
json.dump(result, f)
print(json.dumps(result))
return 0
if __name__ == "__main__":
raise SystemExit(main())