andylizf's picture
Upload folder using huggingface_hub
5fed0fc verified
import torch
import math
import triton
from typing import Optional
import torch.nn.functional as F
# Ensure CUDA is available and properly initialize device
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available. This benchmark requires a CUDA-enabled GPU.")
DEVICE = torch.device("cuda:0")
torch.cuda.set_device(DEVICE)
def alloc_fn(size: int, align: int, stream: Optional[int]):
assert align == 128
assert stream == 0
return torch.empty(size, dtype=torch.int8, device=DEVICE)
triton.set_allocator(alloc_fn)
torch.manual_seed(0)
try:
torch.cuda.manual_seed_all(0)
except Exception:
pass
assert triton.runtime.driver.active.get_current_target().backend == "cuda", "This benchmark only supports CUDA backend."
def _bench_ms(fn):
out = triton.testing.do_bench(fn, quantiles=[0.5])
if isinstance(out, (tuple, list)):
return float(out[0])
return float(out)
def _is_close(x: torch.Tensor, y: torch.Tensor, rtol=1e-2, atol=0.5):
return torch.allclose(x, y, rtol=rtol, atol=atol)
def _pt_fused_linear_ce(X, W, B, targets):
logits = (X @ W).float() + B.float()
return F.cross_entropy(logits, targets, reduction='none')
def _cpu_fused_linear_ce(X, W, B, targets):
# CPU baseline: move to CPU, compute, move back
X_cpu = X.cpu().float()
W_cpu = W.cpu().float()
B_cpu = B.cpu().float()
targets_cpu = targets.cpu()
logits_cpu = (X_cpu @ W_cpu) + B_cpu
result_cpu = F.cross_entropy(logits_cpu, targets_cpu, reduction='none')
return result_cpu.to(DEVICE)
def _bench_pair(M, N, K, answer_fused_linear_ce, baseline_fused_linear_ce=_pt_fused_linear_ce):
X = torch.randn(M, K, device=DEVICE, dtype=torch.float16)
W = torch.randn(K, N, device=DEVICE, dtype=torch.float16)
B = torch.randn(N, device=DEVICE, dtype=torch.float32)
targets = torch.randint(high=N, size=(M,), device=DEVICE, dtype=torch.int64)
# CPU baseline timing (synchronize before timing)
torch.cuda.synchronize()
import time
cpu_times = []
for _ in range(10):
start = time.perf_counter()
_cpu_fused_linear_ce(X, W, B, targets)
torch.cuda.synchronize() # Wait for CPU->GPU transfer
cpu_times.append((time.perf_counter() - start) * 1000) # Convert to ms
cpu_baseline_ms = sorted(cpu_times)[len(cpu_times)//2] # Median
# GPU baseline timing
gpu_baseline_ms = _bench_ms(lambda: baseline_fused_linear_ce(X, W, B, targets))
# Answer timing
answer_ms = _bench_ms(lambda: answer_fused_linear_ce(X, W, B, targets))
# Correctness check against GPU baseline
ref = baseline_fused_linear_ce(X, W, B, targets)
out = answer_fused_linear_ce(X, W, B, targets)
passed = _is_close(out, ref) # Uses default rtol=1e-2, atol=0.5
# Debug output for correctness failures
if not passed:
print(f"\n[DEBUG] Correctness failure for M={M}, N={N}, K={K}")
print(f"[DEBUG] Reference shape: {ref.shape}, Output shape: {out.shape}")
print(f"[DEBUG] Reference dtype: {ref.dtype}, Output dtype: {out.dtype}")
print(f"[DEBUG] Reference min/max/mean: {ref.min().item():.6f} / {ref.max().item():.6f} / {ref.mean().item():.6f}")
print(f"[DEBUG] Output min/max/mean: {out.min().item():.6f} / {out.max().item():.6f} / {out.mean().item():.6f}")
diff = torch.abs(out - ref)
max_diff_idx = torch.argmax(diff)
print(f"[DEBUG] Max absolute difference: {diff.max().item():.6f} at index {max_diff_idx.item()}")
print(f"[DEBUG] Reference value at max diff: {ref[max_diff_idx].item():.6f}")
print(f"[DEBUG] Output value at max diff: {out[max_diff_idx].item():.6f}")
print(f"[DEBUG] Relative error at max diff: {(diff[max_diff_idx] / (torch.abs(ref[max_diff_idx]) + 1e-8)).item():.6f}")
# Check if any values are NaN or Inf
ref_nan = torch.isnan(ref).sum().item()
ref_inf = torch.isinf(ref).sum().item()
out_nan = torch.isnan(out).sum().item()
out_inf = torch.isinf(out).sum().item()
print(f"[DEBUG] Reference NaN count: {ref_nan}, Inf count: {ref_inf}")
print(f"[DEBUG] Output NaN count: {out_nan}, Inf count: {out_inf}")
# Print first few values for comparison
print(f"[DEBUG] First 5 reference values: {ref[:5].cpu().tolist()}")
print(f"[DEBUG] First 5 output values: {out[:5].cpu().tolist()}")
return {
"M": M, "N": N, "K": K,
"cpu_baseline_ms": cpu_baseline_ms,
"gpu_baseline_ms": gpu_baseline_ms,
"answer_ms": answer_ms,
"baseline_ms": cpu_baseline_ms, # Keep for compatibility
"close_passed": passed,
"rtol": 1e-2, "atol": 0.5, "passed": passed,
}
def _warmup_gpu(iters: int = 10):
try:
M, N, K = 256, 8192, 4096
X = torch.randn(M, K, device=DEVICE, dtype=torch.float16)
W = torch.randn(K, N, device=DEVICE, dtype=torch.float16)
B = torch.randn(N, device=DEVICE, dtype=torch.float32)
targets = torch.randint(high=N, size=(M,), device=DEVICE, dtype=torch.int64)
for _ in range(max(1, int(iters))):
_ = _pt_fused_linear_ce(X, W, B, targets)
torch.cuda.synchronize()
except Exception:
pass
def summarize_speedup(answer_fused_linear_ce, baseline_fused_linear_ce=None, print_output=False, metadata=None):
# baseline_fused_linear_ce parameter kept for compatibility
# Scoring: 0 points = 3x CPU baseline, 100 points = 7x GPU baseline
# Warm up GPU to stabilize clocks and caches
_warmup_gpu(10)
# Get shapes from metadata or use defaults
if metadata is None:
metadata = {}
shapes = metadata.get("shapes", None)
if shapes is None:
M_list = metadata.get("M_list", [128, 256, 512])
N = metadata.get("N", 8192)
K = metadata.get("K", 4096)
shapes = [(M, N, K) for M in M_list]
rows = []
for (M, N, K) in shapes:
r = _bench_pair(M, N, K, answer_fused_linear_ce, _pt_fused_linear_ce)
rows.append(r)
if print_output:
print("\n=== Answer vs Baseline: Speedup for each shape (based on median time) ===")
speedups_cpu = []
speedups_gpu = []
for r in rows:
answer_time = r["answer_ms"]
cpu_time = r.get("cpu_baseline_ms")
gpu_time = r.get("gpu_baseline_ms")
if cpu_time is not None and answer_time is not None:
sp_cpu = cpu_time / answer_time
speedups_cpu.append(sp_cpu)
if gpu_time is not None and answer_time is not None:
sp_gpu = gpu_time / answer_time
speedups_gpu.append(sp_gpu)
status = "OK" if r["close_passed"] else "FAIL"
if print_output:
print(
f"M={r['M']:4d} N={r['N']:4d} K={r['K']:4d} "
f"CPU={cpu_time:7.3f} ms GPU={gpu_time:7.3f} ms answer={answer_time:7.3f} ms "
f"[Passed: {status} "
f"rtol={r['rtol']:.1e} atol={r['atol']:.1e}]"
)
if speedups_cpu:
geo_mean_cpu = math.exp(sum(math.log(s) for s in speedups_cpu) / len(speedups_cpu))
else:
geo_mean_cpu = 0.0
if speedups_gpu:
geo_mean_gpu = math.exp(sum(math.log(s) for s in speedups_gpu) / len(speedups_gpu))
else:
geo_mean_gpu = 0.0
if print_output:
print("\n--- Summary ---")
print(f"Geometric mean speedup vs CPU: {geo_mean_cpu:.3f}x")
print(f"Geometric mean speedup vs GPU: {geo_mean_gpu:.3f}x")
return rows, geo_mean_cpu, geo_mean_gpu, geo_mean_gpu # Last param kept for compatibility
def run_benchmark(answer_fused_linear_ce, baseline_fused_linear_ce=None, print_output=False, metadata=None):
# baseline_fused_linear_ce parameter kept for compatibility
# Scoring: 0 points = 3x CPU baseline, 100 points = 7x GPU baseline
rows, geo_mean_cpu, geo_mean_gpu, _ = summarize_speedup(answer_fused_linear_ce, baseline_fused_linear_ce, print_output=print_output, metadata=metadata)
# Compute geometric mean CPU and GPU baseline times
cpu_times = [r["cpu_baseline_ms"] for r in rows if r.get("cpu_baseline_ms") is not None]
gpu_times = [r["gpu_baseline_ms"] for r in rows if r.get("gpu_baseline_ms") is not None]
answer_times = [r["answer_ms"] for r in rows if r.get("answer_ms") is not None]
geo_mean_cpu_time = math.exp(sum(math.log(t) for t in cpu_times) / len(cpu_times)) if cpu_times else 0.0
geo_mean_gpu_time = math.exp(sum(math.log(t) for t in gpu_times) / len(gpu_times)) if gpu_times else 0.0
geo_mean_answer_time = math.exp(sum(math.log(t) for t in answer_times) / len(answer_times)) if answer_times else 0.0
return {
"rows": rows,
"geometric_mean_speedup_cpu": geo_mean_cpu,
"geometric_mean_speedup_gpu": geo_mean_gpu,
"geometric_mean_speedup": geo_mean_gpu, # Keep for compatibility
"arithmetic_mean_speedup": geo_mean_gpu, # Keep for compatibility
"median_speedup": geo_mean_gpu, # Keep for compatibility
"geo_mean_cpu_time": geo_mean_cpu_time,
"geo_mean_gpu_time": geo_mean_gpu_time,
"geo_mean_answer_time": geo_mean_answer_time,
"pass_all": all(r["close_passed"] for r in rows),
}