andylizf's picture
Upload folder using huggingface_hub
5fed0fc verified
from typing import List
from pprint import pprint
import networkx as nx
import json
import colorama
from colorama import Fore, Style
from utils import networkx_to_graphviz
from broadcast import *
from utils import *
class BCSimulator:
# Default variables
data_vol: float = 4.0 # size of data to be sent to multiple dsts
num_partitions: int = 1
partition_data_vol: int = data_vol / num_partitions
default_vms_per_region: int = 1
cost_per_instance_hr: float = 0.54 # based on m5.8xlarge spot
src: str
dsts: List[str]
algo: str
g = nx.DiGraph
def __init__(self, num_vms, output_dir=None):
# write output to file
self.output_dir = output_dir
self.default_vms_per_region = num_vms
def initialization(self, path, config):
# check if path is dict
if isinstance(path, str):
# Read from json
with open(path, "r") as f:
data = json.loads(f.read())
else:
data = {
"algo": "none",
"source_node": path.src,
"terminal_nodes": path.dsts,
"num_partitions": path.num_partitions,
"generated_path": path.paths,
}
self.src = data["source_node"]
self.dsts = data["terminal_nodes"]
self.algo = data["algo"]
self.paths = data["generated_path"]
self.num_partitions = config["num_partitions"]
self.data_vol = config["data_vol"]
self.partition_data_vol = self.data_vol / self.num_partitions
# Default in/egress limit if not set
providers = ["aws", "gcp", "azure"]
provider_ingress = [10, 16, 16]
provider_egress = [5, 7, 16]
self.ingress_limits = {providers[i]: provider_ingress[i] for i in range(len(providers))}
self.egress_limits = {providers[i]: provider_egress[i] for i in range(len(providers))}
if "ingress_limit" in config:
for p, limit in config["ingress_limit"].items():
self.ingress_limits[p] = self.default_vms_per_region * limit
if "egress_limit" in config:
for p, limit in config["egress_limit"].items():
self.egress_limits[p] = self.default_vms_per_region * limit
# print("Data vol (Gbit): ", self.data_vol * 8)
print("Ingress limits: ", self.ingress_limits)
print("Egress limits: ", self.egress_limits)
def evaluate_path(self, path, config, write_to_file=False):
print(f"\n==============> Evaluation")
self.initialization(path, config)
# construct graph
print(f"\n--------- Algo: {self.algo}")
self.g = self.__construct_g()
print("\n=> Data path to dests")
for path in self.__get_path():
print("--")
print(path)
# NOTE: check
for i in range(len(path) - 1):
print(f"Flow: {self.g[path[i]][path[i+1]]['flow']}")
print(f"Actual throughput: {round(self.g[path[i]][path[i+1]]['throughput'], 4)}")
print(f"Cost: {self.g[path[i]][path[i+1]]['cost']}\n")
# evaluate transfer time and total cost
max_t, avg_t, last_dst = self.__transfer_time()
self.cost = self.__total_cost()
# output to json file
if write_to_file:
open(f"{self.output_dir}/{self.algo}_eval.json", "w").write(
json.dumps(
{
"path": path,
"max_transfer_time": max_t,
"avg_transfer_time": avg_t,
"last_dst": last_dst,
"tot_cost": self.cost,
}
)
)
return max_t, self.cost
def __construct_g(self):
# construct a graph based on the given topology
g = nx.DiGraph()
for dst in self.dsts:
for partition_id in range(self.num_partitions):
print(self.paths)
print("Num of partitions: ", self.num_partitions)
for edge in self.paths[dst][str(partition_id)]:
src, dst, edge_data = edge[0], edge[1], edge[2]
if not g.has_edge(src, dst):
cost = edge_data["cost"]
throughput = edge_data["throughput"] # * self.default_vms_per_region
g.add_edge(src, dst, throughput=throughput, cost=edge_data["cost"], flow=throughput)
g[src][dst]["partitions"] = set()
g[src][dst]["partitions"].add(partition_id)
# h = networkx_to_graphviz(g, self.src, self.dsts, label="throughput")
# h.render(view=True)
print(f"Default vms: {self.default_vms_per_region}")
# Proportionally share if exceed in/egress limit of any node
for node in g.nodes:
provider = node.split(":")[0]
in_edges, out_edges = g.in_edges(node), g.out_edges(node)
in_flow_sum = sum([g[i[0]][i[1]]["flow"] for i in in_edges])
out_flow_sum = sum([g[o[0]][o[1]]["flow"] for o in out_edges])
if in_flow_sum > self.ingress_limits[provider]:
# print("\nExceed ingress limit")
for edge in in_edges:
src, dst = edge[0], edge[1]
# assign based on flow proportion
# flow_proportion = g[src][dst]['throughput'] / in_flow_sum
# or assign based on num of incoming flows
flow_proportion = 1 / len(list(in_edges))
g[src][dst]["flow"] = min(g[src][dst]["flow"], self.ingress_limits[provider] * flow_proportion)
if out_flow_sum > self.egress_limits[provider]:
# print("\nExceed egress limit")
for edge in out_edges:
src, dst = edge[0], edge[1]
# assign based on flow proportion
# flow_proportion = g[src][dst]['throughput'] / out_flow_sum
# or assign based on num of incoming flows
flow_proportion = 1 / len(list(out_edges))
print(f"src: {src}, dst: {dst}, flow proportion: {flow_proportion}")
g[src][dst]["flow"] = min(g[src][dst]["flow"], self.egress_limits[provider] * flow_proportion)
return g
def __get_path(self):
all_paths = [path for node in self.dsts for path in nx.all_simple_paths(self.g, self.src, node)]
return all_paths
def __slowest_capacity_link(self):
min_tput = min([edge[-1]["throughput"] for edge in self.g.edges().data()])
return min_tput
def __transfer_time(self, log=True):
# time for each (src, dst) pair
t_dict = dict()
for dst in self.dsts:
partition_time = float("-inf")
for i in range(self.num_partitions):
# NOTE: how to calculate this? is it correct for both baseline and brute-force?
for edge in self.paths[dst][str(i)]:
edge_data = self.g[edge[0]][edge[1]]
partition_time = max(partition_time, len(edge_data["partitions"]) * self.partition_data_vol * 8 / edge_data["flow"])
t_dict[dst] = partition_time
max_t = max(t_dict.values())
last_dst = [k for k, v in t_dict.items() if v == max_t] # last dst receiving obj
avg_t = sum(t_dict.values()) / len(t_dict.values())
# assert(max_t == self.data_vol / self.__slowest_capacity_link()) # checking for single data copy case
if log:
print(f"\n{Fore.BLUE}Algo: {Fore.YELLOW}{self.algo}{Style.RESET_ALL}")
print(
f"{Fore.BLUE}Data vol = {Fore.YELLOW}{self.data_vol} GB {Fore.BLUE}or {Fore.YELLOW}{self.data_vol * 8} Gbit{Style.RESET_ALL}"
)
print(f"\n{Fore.BLUE}Transfer time (s) for each destination: {Style.RESET_ALL}")
pprint({key: round(value, 5) for key, value in t_dict.items()})
print(f"{Fore.BLUE}Throughput (Gbps) for each destination: {Style.RESET_ALL}")
pprint({key: round(self.data_vol * 8 / value, 5) for key, value in t_dict.items()})
print(f"\n{Fore.BLUE}Max transfer time = {Fore.YELLOW}{round(max_t, 4)} s {Style.RESET_ALL}")
print(
f"{Fore.BLUE}Overall throughput = {Fore.YELLOW}{round(self.data_vol * 8 / max_t, 4)} Gbps{Style.RESET_ALL}"
) # data size / max transfer time
print(f"{Fore.BLUE}Last dst receiving data = {Fore.YELLOW}{last_dst}{Style.RESET_ALL}")
# print(f"The avg transfer time is: {round(avg_t, 3)}")
return max_t, avg_t, last_dst
def __total_cost(self):
sum_egress_cost = 0
for edge in self.g.edges.data():
edge_data = edge[-1]
sum_egress_cost += (
len(edge_data["partitions"]) * self.partition_data_vol * edge_data["cost"]
) ## TODO: is this calculation correct?
runtime_s, _, _ = self.__transfer_time(log=False)
runtime_s = round(runtime_s, 2)
sum_instance_cost = 0
for node in self.g.nodes():
# print("Default vm per region: ", self.default_vms_per_region)
# print("Cost per instance hr: ", (self.cost_per_instance_hr / 3600) * runtime_s)
sum_instance_cost += self.default_vms_per_region * (self.cost_per_instance_hr / 3600) * runtime_s
sum_cost = sum_egress_cost + sum_instance_cost
print(
f"{Fore.BLUE}Sum of total cost = egress cost {Fore.YELLOW}(${round(sum_egress_cost, 4)}) {Fore.BLUE}+ instance cost {Fore.YELLOW}(${round(sum_instance_cost, 4)}) {Fore.BLUE}= {Fore.YELLOW}${round(sum_cost, 3)}{Style.RESET_ALL}"
)
return sum_cost