|
|
from typing import List |
|
|
from pprint import pprint |
|
|
import networkx as nx |
|
|
import json |
|
|
import colorama |
|
|
from colorama import Fore, Style |
|
|
from utils import networkx_to_graphviz |
|
|
from broadcast import * |
|
|
from utils import * |
|
|
|
|
|
class BCSimulator: |
|
|
|
|
|
data_vol: float = 4.0 |
|
|
num_partitions: int = 1 |
|
|
partition_data_vol: int = data_vol / num_partitions |
|
|
default_vms_per_region: int = 1 |
|
|
cost_per_instance_hr: float = 0.54 |
|
|
src: str |
|
|
dsts: List[str] |
|
|
algo: str |
|
|
g = nx.DiGraph |
|
|
|
|
|
def __init__(self, num_vms, output_dir=None): |
|
|
|
|
|
self.output_dir = output_dir |
|
|
self.default_vms_per_region = num_vms |
|
|
|
|
|
def initialization(self, path, config): |
|
|
|
|
|
if isinstance(path, str): |
|
|
|
|
|
with open(path, "r") as f: |
|
|
data = json.loads(f.read()) |
|
|
else: |
|
|
data = { |
|
|
"algo": "none", |
|
|
"source_node": path.src, |
|
|
"terminal_nodes": path.dsts, |
|
|
"num_partitions": path.num_partitions, |
|
|
"generated_path": path.paths, |
|
|
} |
|
|
|
|
|
self.src = data["source_node"] |
|
|
self.dsts = data["terminal_nodes"] |
|
|
self.algo = data["algo"] |
|
|
self.paths = data["generated_path"] |
|
|
|
|
|
self.num_partitions = config["num_partitions"] |
|
|
self.data_vol = config["data_vol"] |
|
|
self.partition_data_vol = self.data_vol / self.num_partitions |
|
|
|
|
|
|
|
|
providers = ["aws", "gcp", "azure"] |
|
|
provider_ingress = [10, 16, 16] |
|
|
provider_egress = [5, 7, 16] |
|
|
self.ingress_limits = {providers[i]: provider_ingress[i] for i in range(len(providers))} |
|
|
self.egress_limits = {providers[i]: provider_egress[i] for i in range(len(providers))} |
|
|
|
|
|
if "ingress_limit" in config: |
|
|
for p, limit in config["ingress_limit"].items(): |
|
|
self.ingress_limits[p] = self.default_vms_per_region * limit |
|
|
|
|
|
if "egress_limit" in config: |
|
|
for p, limit in config["egress_limit"].items(): |
|
|
self.egress_limits[p] = self.default_vms_per_region * limit |
|
|
|
|
|
print("Ingress limits: ", self.ingress_limits) |
|
|
print("Egress limits: ", self.egress_limits) |
|
|
|
|
|
def evaluate_path(self, path, config, write_to_file=False): |
|
|
print(f"\n==============> Evaluation") |
|
|
self.initialization(path, config) |
|
|
|
|
|
|
|
|
print(f"\n--------- Algo: {self.algo}") |
|
|
self.g = self.__construct_g() |
|
|
print("\n=> Data path to dests") |
|
|
for path in self.__get_path(): |
|
|
print("--") |
|
|
print(path) |
|
|
|
|
|
for i in range(len(path) - 1): |
|
|
print(f"Flow: {self.g[path[i]][path[i+1]]['flow']}") |
|
|
print(f"Actual throughput: {round(self.g[path[i]][path[i+1]]['throughput'], 4)}") |
|
|
print(f"Cost: {self.g[path[i]][path[i+1]]['cost']}\n") |
|
|
|
|
|
|
|
|
max_t, avg_t, last_dst = self.__transfer_time() |
|
|
self.cost = self.__total_cost() |
|
|
|
|
|
|
|
|
if write_to_file: |
|
|
open(f"{self.output_dir}/{self.algo}_eval.json", "w").write( |
|
|
json.dumps( |
|
|
{ |
|
|
"path": path, |
|
|
"max_transfer_time": max_t, |
|
|
"avg_transfer_time": avg_t, |
|
|
"last_dst": last_dst, |
|
|
"tot_cost": self.cost, |
|
|
} |
|
|
) |
|
|
) |
|
|
return max_t, self.cost |
|
|
|
|
|
def __construct_g(self): |
|
|
|
|
|
g = nx.DiGraph() |
|
|
for dst in self.dsts: |
|
|
for partition_id in range(self.num_partitions): |
|
|
print(self.paths) |
|
|
print("Num of partitions: ", self.num_partitions) |
|
|
for edge in self.paths[dst][str(partition_id)]: |
|
|
src, dst, edge_data = edge[0], edge[1], edge[2] |
|
|
if not g.has_edge(src, dst): |
|
|
cost = edge_data["cost"] |
|
|
throughput = edge_data["throughput"] |
|
|
g.add_edge(src, dst, throughput=throughput, cost=edge_data["cost"], flow=throughput) |
|
|
g[src][dst]["partitions"] = set() |
|
|
g[src][dst]["partitions"].add(partition_id) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"Default vms: {self.default_vms_per_region}") |
|
|
|
|
|
for node in g.nodes: |
|
|
provider = node.split(":")[0] |
|
|
|
|
|
in_edges, out_edges = g.in_edges(node), g.out_edges(node) |
|
|
in_flow_sum = sum([g[i[0]][i[1]]["flow"] for i in in_edges]) |
|
|
out_flow_sum = sum([g[o[0]][o[1]]["flow"] for o in out_edges]) |
|
|
|
|
|
if in_flow_sum > self.ingress_limits[provider]: |
|
|
|
|
|
for edge in in_edges: |
|
|
src, dst = edge[0], edge[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flow_proportion = 1 / len(list(in_edges)) |
|
|
|
|
|
g[src][dst]["flow"] = min(g[src][dst]["flow"], self.ingress_limits[provider] * flow_proportion) |
|
|
|
|
|
if out_flow_sum > self.egress_limits[provider]: |
|
|
|
|
|
for edge in out_edges: |
|
|
src, dst = edge[0], edge[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flow_proportion = 1 / len(list(out_edges)) |
|
|
|
|
|
print(f"src: {src}, dst: {dst}, flow proportion: {flow_proportion}") |
|
|
g[src][dst]["flow"] = min(g[src][dst]["flow"], self.egress_limits[provider] * flow_proportion) |
|
|
|
|
|
return g |
|
|
|
|
|
def __get_path(self): |
|
|
all_paths = [path for node in self.dsts for path in nx.all_simple_paths(self.g, self.src, node)] |
|
|
return all_paths |
|
|
|
|
|
def __slowest_capacity_link(self): |
|
|
min_tput = min([edge[-1]["throughput"] for edge in self.g.edges().data()]) |
|
|
return min_tput |
|
|
|
|
|
def __transfer_time(self, log=True): |
|
|
|
|
|
t_dict = dict() |
|
|
for dst in self.dsts: |
|
|
partition_time = float("-inf") |
|
|
for i in range(self.num_partitions): |
|
|
|
|
|
for edge in self.paths[dst][str(i)]: |
|
|
edge_data = self.g[edge[0]][edge[1]] |
|
|
partition_time = max(partition_time, len(edge_data["partitions"]) * self.partition_data_vol * 8 / edge_data["flow"]) |
|
|
t_dict[dst] = partition_time |
|
|
|
|
|
max_t = max(t_dict.values()) |
|
|
last_dst = [k for k, v in t_dict.items() if v == max_t] |
|
|
avg_t = sum(t_dict.values()) / len(t_dict.values()) |
|
|
|
|
|
if log: |
|
|
print(f"\n{Fore.BLUE}Algo: {Fore.YELLOW}{self.algo}{Style.RESET_ALL}") |
|
|
print( |
|
|
f"{Fore.BLUE}Data vol = {Fore.YELLOW}{self.data_vol} GB {Fore.BLUE}or {Fore.YELLOW}{self.data_vol * 8} Gbit{Style.RESET_ALL}" |
|
|
) |
|
|
print(f"\n{Fore.BLUE}Transfer time (s) for each destination: {Style.RESET_ALL}") |
|
|
pprint({key: round(value, 5) for key, value in t_dict.items()}) |
|
|
print(f"{Fore.BLUE}Throughput (Gbps) for each destination: {Style.RESET_ALL}") |
|
|
pprint({key: round(self.data_vol * 8 / value, 5) for key, value in t_dict.items()}) |
|
|
print(f"\n{Fore.BLUE}Max transfer time = {Fore.YELLOW}{round(max_t, 4)} s {Style.RESET_ALL}") |
|
|
print( |
|
|
f"{Fore.BLUE}Overall throughput = {Fore.YELLOW}{round(self.data_vol * 8 / max_t, 4)} Gbps{Style.RESET_ALL}" |
|
|
) |
|
|
print(f"{Fore.BLUE}Last dst receiving data = {Fore.YELLOW}{last_dst}{Style.RESET_ALL}") |
|
|
|
|
|
return max_t, avg_t, last_dst |
|
|
|
|
|
def __total_cost(self): |
|
|
sum_egress_cost = 0 |
|
|
for edge in self.g.edges.data(): |
|
|
edge_data = edge[-1] |
|
|
sum_egress_cost += ( |
|
|
len(edge_data["partitions"]) * self.partition_data_vol * edge_data["cost"] |
|
|
) |
|
|
|
|
|
runtime_s, _, _ = self.__transfer_time(log=False) |
|
|
runtime_s = round(runtime_s, 2) |
|
|
sum_instance_cost = 0 |
|
|
for node in self.g.nodes(): |
|
|
|
|
|
|
|
|
sum_instance_cost += self.default_vms_per_region * (self.cost_per_instance_hr / 3600) * runtime_s |
|
|
|
|
|
sum_cost = sum_egress_cost + sum_instance_cost |
|
|
print( |
|
|
f"{Fore.BLUE}Sum of total cost = egress cost {Fore.YELLOW}(${round(sum_egress_cost, 4)}) {Fore.BLUE}+ instance cost {Fore.YELLOW}(${round(sum_instance_cost, 4)}) {Fore.BLUE}= {Fore.YELLOW}${round(sum_cost, 3)}{Style.RESET_ALL}" |
|
|
) |
|
|
return sum_cost |
|
|
|