Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
ApolloCorpus / check_exam /check_zh.py
Xidong's picture
Upload folder using huggingface_hub
07de217 verified
raw
history blame
1.91 kB
import json
def filter_items_based_on_questions(questions_file_path, items_file_path, output_filtered_path, output_removed_path):
with open(questions_file_path, 'r', encoding='utf-8') as file:
questions = json.load(file)
with open(items_file_path, 'r', encoding='utf-8') as file:
items = json.load(file)
initial_count = len(items)
removed_items = []
print("Starting filtering process...")
filtered_items = []
for index, item in enumerate(items):
if index % 100 == 0:
print(f"Processed {index}/{initial_count} items...")
sameFlag = False
i_question = item[0].split('\n')[1][4:]
for question in questions:
if question in item[0]:
if len(question) >= 12 or i_question == question:
removed_items.append([item, question])
sameFlag = True
break
if not sameFlag:
filtered_items.append(item)
final_count = len(filtered_items)
with open(output_filtered_path, 'w', encoding='utf-8') as file:
json.dump(filtered_items, file, ensure_ascii=False, indent=4)
with open(output_removed_path, 'w', encoding='utf-8') as file:
json.dump(removed_items, file, ensure_ascii=False, indent=4)
print(f"Initial item count: {initial_count}")
print(f"Final item count: {final_count}")
print(f"Removed item count: {len(removed_items)}")
print("Filtering process completed.")
questions_file_path = "./questions/zh_question.json"
items_file_path = "../train/sft/medicalExam_zh.json"
output_filtered_path = "../train/sft/medicalExam_zh_clean.json"
output_removed_path = "../train/sft/medicalExam_zh_dup.json"
filter_items_based_on_questions(questions_file_path, items_file_path, output_filtered_path, output_removed_path)