Francesco commited on
Commit
040828d
·
1 Parent(s): 6b8a8fc

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -30,19 +30,115 @@ dataset_info:
30
  '5': shark
31
  '6': starfish
32
  '7': stingray
33
- splits:
34
- - name: train
35
- num_bytes: 27311262.0
36
- num_examples: 448
37
- - name: validation
38
- num_bytes: 3543917.0
39
- num_examples: 63
40
- - name: test
41
- num_bytes: 7912409.0
42
- num_examples: 127
43
- download_size: 38688692
44
- dataset_size: 38767588.0
 
 
 
 
 
 
 
 
45
  ---
46
- # Dataset Card for "aquarium-qlnqy"
47
 
48
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  '5': shark
31
  '6': starfish
32
  '7': stingray
33
+ annotations_creators:
34
+ - crowdsourced
35
+ language_creators:
36
+ - found
37
+ language:
38
+ - en
39
+ license:
40
+ - cc
41
+ multilinguality:
42
+ - monolingual
43
+ size_categories:
44
+ - 1K<n<10K
45
+ source_datasets:
46
+ - original
47
+ task_categories:
48
+ - object-detection
49
+ task_ids: []
50
+ pretty_name: aquarium-qlnqy
51
+ tags:
52
+ - rf100
53
  ---
 
54
 
55
+ # Dataset Card for aquarium-qlnqy
56
+
57
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
58
+
59
+ ## Dataset Description
60
+
61
+ - **Homepage:** https://universe.roboflow.com/object-detection/aquarium-qlnqy
62
+ - **Point of Contact:** francesco.zuppichini@gmail.com
63
+
64
+ ### Dataset Summary
65
+
66
+ aquarium-qlnqy
67
+
68
+ ### Supported Tasks and Leaderboards
69
+
70
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
71
+
72
+ ### Languages
73
+
74
+ English
75
+
76
+ ## Dataset Structure
77
+
78
+ ### Data Instances
79
+
80
+ A data point comprises an image and its object annotations.
81
+
82
+ ```
83
+ {
84
+ 'image_id': 15,
85
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
86
+ 'width': 964043,
87
+ 'height': 640,
88
+ 'objects': {
89
+ 'id': [114, 115, 116, 117],
90
+ 'area': [3796, 1596, 152768, 81002],
91
+ 'bbox': [
92
+ [302.0, 109.0, 73.0, 52.0],
93
+ [810.0, 100.0, 57.0, 28.0],
94
+ [160.0, 31.0, 248.0, 616.0],
95
+ [741.0, 68.0, 202.0, 401.0]
96
+ ],
97
+ 'category': [4, 4, 0, 0]
98
+ }
99
+ }
100
+ ```
101
+
102
+ ### Data Fields
103
+
104
+ - `image`: the image id
105
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
106
+ - `width`: the image width
107
+ - `height`: the image height
108
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
109
+ - `id`: the annotation id
110
+ - `area`: the area of the bounding box
111
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
112
+ - `category`: the object's category.
113
+
114
+
115
+ #### Who are the annotators?
116
+
117
+ Annotators are Roboflow users
118
+
119
+ ## Additional Information
120
+
121
+ ### Licensing Information
122
+
123
+ See original homepage https://universe.roboflow.com/object-detection/aquarium-qlnqy
124
+
125
+ ### Citation Information
126
+
127
+ ```
128
+ @misc{ aquarium-qlnqy,
129
+ title = { aquarium qlnqy Dataset },
130
+ type = { Open Source Dataset },
131
+ author = { Roboflow 100 },
132
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/aquarium-qlnqy } },
133
+ url = { https://universe.roboflow.com/object-detection/aquarium-qlnqy },
134
+ journal = { Roboflow Universe },
135
+ publisher = { Roboflow },
136
+ year = { 2022 },
137
+ month = { nov },
138
+ note = { visited on 2023-03-29 },
139
+ }"
140
+ ```
141
+
142
+ ### Contributions
143
+
144
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.