parquet-converter commited on
Commit
f411d9d
1 Parent(s): c91f414

Update parquet files

Browse files
dataset.tar.gz → Francesco--aerial-pool/parquet-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:197564db5e525c9d0d5c114c00bac45caa980005244edaa2d167a1ac977349c1
3
- size 57185847
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6de48df150088c203a0c275d144072bfa98736609408369b6958e77706a1bc4
3
+ size 10489234
data/test-00000-of-00001-80b6a5f91f90f19b.parquet → Francesco--aerial-pool/parquet-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:62c9b03a6c9e1cfff8aaa4af43afeebdcd3b2e84528aa5004197e737521fd468
3
- size 10489235
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a9f4f639a0e0edb56f88d880276ebbad483f55f98cab087906015fbd783974b
3
+ size 40841856
data/validation-00000-of-00001-4601a2b8889afc6a.parquet → Francesco--aerial-pool/parquet-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb382b38dc42b735a588339d2992f2ebcdbcc67c83e59de28e51b0a6b7a8cf8c
3
- size 5793586
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c162c3db045f870aac5ddb47735bd957fd6277ce1128b50b0b333f28c18b841
3
+ size 5793585
README.md DELETED
@@ -1,142 +0,0 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: image_id
5
- dtype: int64
6
- - name: image
7
- dtype: image
8
- - name: width
9
- dtype: int32
10
- - name: height
11
- dtype: int32
12
- - name: objects
13
- sequence:
14
- - name: id
15
- dtype: int64
16
- - name: area
17
- dtype: int64
18
- - name: bbox
19
- sequence: float32
20
- length: 4
21
- - name: category
22
- dtype:
23
- class_label:
24
- names:
25
- '0': aerial-pool
26
- '1': black-hat
27
- '2': bodysurface
28
- '3': bodyunder
29
- '4': umpire
30
- '5': white-hat
31
- annotations_creators:
32
- - crowdsourced
33
- language_creators:
34
- - found
35
- language:
36
- - en
37
- license:
38
- - cc
39
- multilinguality:
40
- - monolingual
41
- size_categories:
42
- - 1K<n<10K
43
- source_datasets:
44
- - original
45
- task_categories:
46
- - object-detection
47
- task_ids: []
48
- pretty_name: aerial-pool
49
- tags:
50
- - rf100
51
- ---
52
-
53
- # Dataset Card for aerial-pool
54
-
55
- ** The original COCO dataset is stored at `dataset.tar.gz`**
56
-
57
- ## Dataset Description
58
-
59
- - **Homepage:** https://universe.roboflow.com/object-detection/aerial-pool
60
- - **Point of Contact:** francesco.zuppichini@gmail.com
61
-
62
- ### Dataset Summary
63
-
64
- aerial-pool
65
-
66
- ### Supported Tasks and Leaderboards
67
-
68
- - `object-detection`: The dataset can be used to train a model for Object Detection.
69
-
70
- ### Languages
71
-
72
- English
73
-
74
- ## Dataset Structure
75
-
76
- ### Data Instances
77
-
78
- A data point comprises an image and its object annotations.
79
-
80
- ```
81
- {
82
- 'image_id': 15,
83
- 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
84
- 'width': 964043,
85
- 'height': 640,
86
- 'objects': {
87
- 'id': [114, 115, 116, 117],
88
- 'area': [3796, 1596, 152768, 81002],
89
- 'bbox': [
90
- [302.0, 109.0, 73.0, 52.0],
91
- [810.0, 100.0, 57.0, 28.0],
92
- [160.0, 31.0, 248.0, 616.0],
93
- [741.0, 68.0, 202.0, 401.0]
94
- ],
95
- 'category': [4, 4, 0, 0]
96
- }
97
- }
98
- ```
99
-
100
- ### Data Fields
101
-
102
- - `image`: the image id
103
- - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
104
- - `width`: the image width
105
- - `height`: the image height
106
- - `objects`: a dictionary containing bounding box metadata for the objects present on the image
107
- - `id`: the annotation id
108
- - `area`: the area of the bounding box
109
- - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
110
- - `category`: the object's category.
111
-
112
-
113
- #### Who are the annotators?
114
-
115
- Annotators are Roboflow users
116
-
117
- ## Additional Information
118
-
119
- ### Licensing Information
120
-
121
- See original homepage https://universe.roboflow.com/object-detection/aerial-pool
122
-
123
- ### Citation Information
124
-
125
- ```
126
- @misc{ aerial-pool,
127
- title = { aerial pool Dataset },
128
- type = { Open Source Dataset },
129
- author = { Roboflow 100 },
130
- howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-pool } },
131
- url = { https://universe.roboflow.com/object-detection/aerial-pool },
132
- journal = { Roboflow Universe },
133
- publisher = { Roboflow },
134
- year = { 2022 },
135
- month = { nov },
136
- note = { visited on 2023-03-29 },
137
- }"
138
- ```
139
-
140
- ### Contributions
141
-
142
- Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/train-00000-of-00001-2cef666ef4acd79d.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e454989d10bd0eacc1b9f0b8002a13d16d3f8db7f4835511aeaf7a70031810da
3
- size 40841857
 
 
 
 
dataset_info.json DELETED
@@ -1 +0,0 @@
1
- {"description": "\naerial pool - v3 2022-09-14 1:18pm\n==============================\n\nThis dataset was exported via roboflow.com on September 15, 2022 at 8:19 PM GMT\n\nRoboflow is an end-to-end computer vision platform that helps you\n* collaborate with your team on computer vision projects\n* collect & organize images\n* understand unstructured image data\n* annotate, and create datasets\n* export, train, and deploy computer vision models\n* use active learning to improve your dataset over time\n\nIt includes 946 images.\nAerial-pool are annotated in COCO format.\n\nThe following pre-processing was applied to each image:\n* Auto-orientation of pixel data (with EXIF-orientation stripping)\n* Resize to 640x640 (Stretch)\n\nNo image augmentation techniques were applied.\n\n\n", "citation": "@misc{ aerial-pool,\n title = { aerial pool Dataset },\n type = { Open Source Dataset },\n author = { Roboflow 100 },\n howpublished = { \\url{ https://universe.roboflow.com/object-detection/aerial-pool } },\n url = { https://universe.roboflow.com/object-detection/aerial-pool },\n journal = { Roboflow Universe },\n publisher = { Roboflow },\n year = { 2022 },\n month = { nov },\n note = { visited on 2023-03-29 },\n}\"", "homepage": "https://universe.roboflow.com/object-detection/aerial-pool", "license": "CC BY 4.0", "features": {"image_id": {"dtype": "int64", "_type": "Value"}, "image": {"_type": "Image"}, "width": {"dtype": "int32", "_type": "Value"}, "height": {"dtype": "int32", "_type": "Value"}, "objects": {"feature": {"id": {"dtype": "int64", "_type": "Value"}, "area": {"dtype": "int64", "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "_type": "Value"}, "length": 4, "_type": "Sequence"}, "category": {"names": ["aerial-pool", "black-hat", "bodysurface", "bodyunder", "umpire", "white-hat"], "_type": "ClassLabel"}}, "_type": "Sequence"}}, "builder_name": "dataset", "config_name": "default", "version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 41165779, "num_examples": 673, "dataset_name": "dataset"}, "validation": {"name": "validation", "num_bytes": 5828831, "num_examples": 96, "dataset_name": "dataset"}, "test": {"name": "test", "num_bytes": 10561065, "num_examples": 177, "dataset_name": "dataset"}}, "download_checksums": {"https://huggingface.co/datasets/Francesco/aerial-pool/resolve/main/dataset.tar.gz": {"num_bytes": 57185847, "checksum": null}}, "download_size": 57185847, "dataset_size": 57555675, "size_in_bytes": 114741522}