parquet-converter
commited on
Commit
•
f411d9d
1
Parent(s):
c91f414
Update parquet files
Browse files- dataset.tar.gz → Francesco--aerial-pool/parquet-test.parquet +2 -2
- data/test-00000-of-00001-80b6a5f91f90f19b.parquet → Francesco--aerial-pool/parquet-train.parquet +2 -2
- data/validation-00000-of-00001-4601a2b8889afc6a.parquet → Francesco--aerial-pool/parquet-validation.parquet +2 -2
- README.md +0 -142
- data/train-00000-of-00001-2cef666ef4acd79d.parquet +0 -3
- dataset_info.json +0 -1
dataset.tar.gz → Francesco--aerial-pool/parquet-test.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6de48df150088c203a0c275d144072bfa98736609408369b6958e77706a1bc4
|
3 |
+
size 10489234
|
data/test-00000-of-00001-80b6a5f91f90f19b.parquet → Francesco--aerial-pool/parquet-train.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a9f4f639a0e0edb56f88d880276ebbad483f55f98cab087906015fbd783974b
|
3 |
+
size 40841856
|
data/validation-00000-of-00001-4601a2b8889afc6a.parquet → Francesco--aerial-pool/parquet-validation.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c162c3db045f870aac5ddb47735bd957fd6277ce1128b50b0b333f28c18b841
|
3 |
+
size 5793585
|
README.md
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
---
|
2 |
-
dataset_info:
|
3 |
-
features:
|
4 |
-
- name: image_id
|
5 |
-
dtype: int64
|
6 |
-
- name: image
|
7 |
-
dtype: image
|
8 |
-
- name: width
|
9 |
-
dtype: int32
|
10 |
-
- name: height
|
11 |
-
dtype: int32
|
12 |
-
- name: objects
|
13 |
-
sequence:
|
14 |
-
- name: id
|
15 |
-
dtype: int64
|
16 |
-
- name: area
|
17 |
-
dtype: int64
|
18 |
-
- name: bbox
|
19 |
-
sequence: float32
|
20 |
-
length: 4
|
21 |
-
- name: category
|
22 |
-
dtype:
|
23 |
-
class_label:
|
24 |
-
names:
|
25 |
-
'0': aerial-pool
|
26 |
-
'1': black-hat
|
27 |
-
'2': bodysurface
|
28 |
-
'3': bodyunder
|
29 |
-
'4': umpire
|
30 |
-
'5': white-hat
|
31 |
-
annotations_creators:
|
32 |
-
- crowdsourced
|
33 |
-
language_creators:
|
34 |
-
- found
|
35 |
-
language:
|
36 |
-
- en
|
37 |
-
license:
|
38 |
-
- cc
|
39 |
-
multilinguality:
|
40 |
-
- monolingual
|
41 |
-
size_categories:
|
42 |
-
- 1K<n<10K
|
43 |
-
source_datasets:
|
44 |
-
- original
|
45 |
-
task_categories:
|
46 |
-
- object-detection
|
47 |
-
task_ids: []
|
48 |
-
pretty_name: aerial-pool
|
49 |
-
tags:
|
50 |
-
- rf100
|
51 |
-
---
|
52 |
-
|
53 |
-
# Dataset Card for aerial-pool
|
54 |
-
|
55 |
-
** The original COCO dataset is stored at `dataset.tar.gz`**
|
56 |
-
|
57 |
-
## Dataset Description
|
58 |
-
|
59 |
-
- **Homepage:** https://universe.roboflow.com/object-detection/aerial-pool
|
60 |
-
- **Point of Contact:** francesco.zuppichini@gmail.com
|
61 |
-
|
62 |
-
### Dataset Summary
|
63 |
-
|
64 |
-
aerial-pool
|
65 |
-
|
66 |
-
### Supported Tasks and Leaderboards
|
67 |
-
|
68 |
-
- `object-detection`: The dataset can be used to train a model for Object Detection.
|
69 |
-
|
70 |
-
### Languages
|
71 |
-
|
72 |
-
English
|
73 |
-
|
74 |
-
## Dataset Structure
|
75 |
-
|
76 |
-
### Data Instances
|
77 |
-
|
78 |
-
A data point comprises an image and its object annotations.
|
79 |
-
|
80 |
-
```
|
81 |
-
{
|
82 |
-
'image_id': 15,
|
83 |
-
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
|
84 |
-
'width': 964043,
|
85 |
-
'height': 640,
|
86 |
-
'objects': {
|
87 |
-
'id': [114, 115, 116, 117],
|
88 |
-
'area': [3796, 1596, 152768, 81002],
|
89 |
-
'bbox': [
|
90 |
-
[302.0, 109.0, 73.0, 52.0],
|
91 |
-
[810.0, 100.0, 57.0, 28.0],
|
92 |
-
[160.0, 31.0, 248.0, 616.0],
|
93 |
-
[741.0, 68.0, 202.0, 401.0]
|
94 |
-
],
|
95 |
-
'category': [4, 4, 0, 0]
|
96 |
-
}
|
97 |
-
}
|
98 |
-
```
|
99 |
-
|
100 |
-
### Data Fields
|
101 |
-
|
102 |
-
- `image`: the image id
|
103 |
-
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
|
104 |
-
- `width`: the image width
|
105 |
-
- `height`: the image height
|
106 |
-
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
|
107 |
-
- `id`: the annotation id
|
108 |
-
- `area`: the area of the bounding box
|
109 |
-
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
|
110 |
-
- `category`: the object's category.
|
111 |
-
|
112 |
-
|
113 |
-
#### Who are the annotators?
|
114 |
-
|
115 |
-
Annotators are Roboflow users
|
116 |
-
|
117 |
-
## Additional Information
|
118 |
-
|
119 |
-
### Licensing Information
|
120 |
-
|
121 |
-
See original homepage https://universe.roboflow.com/object-detection/aerial-pool
|
122 |
-
|
123 |
-
### Citation Information
|
124 |
-
|
125 |
-
```
|
126 |
-
@misc{ aerial-pool,
|
127 |
-
title = { aerial pool Dataset },
|
128 |
-
type = { Open Source Dataset },
|
129 |
-
author = { Roboflow 100 },
|
130 |
-
howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-pool } },
|
131 |
-
url = { https://universe.roboflow.com/object-detection/aerial-pool },
|
132 |
-
journal = { Roboflow Universe },
|
133 |
-
publisher = { Roboflow },
|
134 |
-
year = { 2022 },
|
135 |
-
month = { nov },
|
136 |
-
note = { visited on 2023-03-29 },
|
137 |
-
}"
|
138 |
-
```
|
139 |
-
|
140 |
-
### Contributions
|
141 |
-
|
142 |
-
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/train-00000-of-00001-2cef666ef4acd79d.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e454989d10bd0eacc1b9f0b8002a13d16d3f8db7f4835511aeaf7a70031810da
|
3 |
-
size 40841857
|
|
|
|
|
|
|
|
dataset_info.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"description": "\naerial pool - v3 2022-09-14 1:18pm\n==============================\n\nThis dataset was exported via roboflow.com on September 15, 2022 at 8:19 PM GMT\n\nRoboflow is an end-to-end computer vision platform that helps you\n* collaborate with your team on computer vision projects\n* collect & organize images\n* understand unstructured image data\n* annotate, and create datasets\n* export, train, and deploy computer vision models\n* use active learning to improve your dataset over time\n\nIt includes 946 images.\nAerial-pool are annotated in COCO format.\n\nThe following pre-processing was applied to each image:\n* Auto-orientation of pixel data (with EXIF-orientation stripping)\n* Resize to 640x640 (Stretch)\n\nNo image augmentation techniques were applied.\n\n\n", "citation": "@misc{ aerial-pool,\n title = { aerial pool Dataset },\n type = { Open Source Dataset },\n author = { Roboflow 100 },\n howpublished = { \\url{ https://universe.roboflow.com/object-detection/aerial-pool } },\n url = { https://universe.roboflow.com/object-detection/aerial-pool },\n journal = { Roboflow Universe },\n publisher = { Roboflow },\n year = { 2022 },\n month = { nov },\n note = { visited on 2023-03-29 },\n}\"", "homepage": "https://universe.roboflow.com/object-detection/aerial-pool", "license": "CC BY 4.0", "features": {"image_id": {"dtype": "int64", "_type": "Value"}, "image": {"_type": "Image"}, "width": {"dtype": "int32", "_type": "Value"}, "height": {"dtype": "int32", "_type": "Value"}, "objects": {"feature": {"id": {"dtype": "int64", "_type": "Value"}, "area": {"dtype": "int64", "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "_type": "Value"}, "length": 4, "_type": "Sequence"}, "category": {"names": ["aerial-pool", "black-hat", "bodysurface", "bodyunder", "umpire", "white-hat"], "_type": "ClassLabel"}}, "_type": "Sequence"}}, "builder_name": "dataset", "config_name": "default", "version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 41165779, "num_examples": 673, "dataset_name": "dataset"}, "validation": {"name": "validation", "num_bytes": 5828831, "num_examples": 96, "dataset_name": "dataset"}, "test": {"name": "test", "num_bytes": 10561065, "num_examples": 177, "dataset_name": "dataset"}}, "download_checksums": {"https://huggingface.co/datasets/Francesco/aerial-pool/resolve/main/dataset.tar.gz": {"num_bytes": 57185847, "checksum": null}}, "download_size": 57185847, "dataset_size": 57555675, "size_in_bytes": 114741522}
|
|
|
|