zhangfz
commited on
Commit
·
de44cb9
1
Parent(s):
58ceb06
update
Browse files- logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json +1 -1
- logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_01057053-d2d8-460a-ab4b-8f0dcb45709c.txt +0 -0
- logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/config.json +27 -0
- logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/training_log_039021ab-4477-44e2-9121-ce92354d757a.txt +0 -0
- logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json +27 -0
- logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_62c86858-e544-45fa-8e10-20927225390f.txt +0 -0
- logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/config.json +27 -0
- logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/training_log_9ebd0b66-cbf1-499b-a4e8-6a3e8c6248a9.txt +0 -0
- logs_new_MUON_large_reshape_svd_gated/svd/mode_0_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json +27 -0
- logs_new_MUON_large_reshape_svd_gated/svd/mode_0_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_533563b5-4895-416e-8ea4-9baaf8e74134.txt +856 -0
- logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json +27 -0
- logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_c51a87f3-6af4-417a-86fa-83dd74e4e135.txt +0 -0
- logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/config.json +27 -0
- logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/training_log_ba9ae92f-719c-4f06-8489-a3fe9a80096d.txt +856 -0
logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json
CHANGED
|
@@ -22,6 +22,6 @@
|
|
| 22 |
"val_tokens": 10420224,
|
| 23 |
"save_every": 0
|
| 24 |
},
|
| 25 |
-
"run_uuid_for_log": "
|
| 26 |
"script_code_logged_at_start": true
|
| 27 |
}
|
|
|
|
| 22 |
"val_tokens": 10420224,
|
| 23 |
"save_every": 0
|
| 24 |
},
|
| 25 |
+
"run_uuid_for_log": "01057053-d2d8-460a-ab4b-8f0dcb45709c",
|
| 26 |
"script_code_logged_at_start": true
|
| 27 |
}
|
logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_01057053-d2d8-460a-ab4b-8f0dcb45709c.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"seed": 43,
|
| 4 |
+
"optimizer_mode": 7,
|
| 5 |
+
"model_parameterization": "gated",
|
| 6 |
+
"adam_lr": 0.0002,
|
| 7 |
+
"muon_lr": 0.0005,
|
| 8 |
+
"base_dir": "logs_new_MUON_large_reshape_svd_gated/ori"
|
| 9 |
+
},
|
| 10 |
+
"hyperparameters": {
|
| 11 |
+
"input_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 12 |
+
"input_val_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 13 |
+
"batch_size": 960,
|
| 14 |
+
"device_batch_size": 24,
|
| 15 |
+
"sequence_length": 1024,
|
| 16 |
+
"num_iterations": 6000,
|
| 17 |
+
"learning_rate": 0.0018,
|
| 18 |
+
"warmup_iters": 0,
|
| 19 |
+
"warmdown_iters": 0,
|
| 20 |
+
"weight_decay": 0,
|
| 21 |
+
"val_loss_every": 125,
|
| 22 |
+
"val_tokens": 10420224,
|
| 23 |
+
"save_every": 0
|
| 24 |
+
},
|
| 25 |
+
"run_uuid_for_log": "039021ab-4477-44e2-9121-ce92354d757a",
|
| 26 |
+
"script_code_logged_at_start": true
|
| 27 |
+
}
|
logs_new_MUON_large_reshape_svd_gated/ori/mode_7_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/training_log_039021ab-4477-44e2-9121-ce92354d757a.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"seed": 42,
|
| 4 |
+
"optimizer_mode": 9,
|
| 5 |
+
"model_parameterization": "gated",
|
| 6 |
+
"adam_lr": 0.0002,
|
| 7 |
+
"muon_lr": 0.0005,
|
| 8 |
+
"base_dir": "logs_new_MUON_large_reshape_svd_gated/ori"
|
| 9 |
+
},
|
| 10 |
+
"hyperparameters": {
|
| 11 |
+
"input_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 12 |
+
"input_val_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 13 |
+
"batch_size": 960,
|
| 14 |
+
"device_batch_size": 24,
|
| 15 |
+
"sequence_length": 1024,
|
| 16 |
+
"num_iterations": 6000,
|
| 17 |
+
"learning_rate": 0.0018,
|
| 18 |
+
"warmup_iters": 0,
|
| 19 |
+
"warmdown_iters": 0,
|
| 20 |
+
"weight_decay": 0,
|
| 21 |
+
"val_loss_every": 125,
|
| 22 |
+
"val_tokens": 10420224,
|
| 23 |
+
"save_every": 0
|
| 24 |
+
},
|
| 25 |
+
"run_uuid_for_log": "62c86858-e544-45fa-8e10-20927225390f",
|
| 26 |
+
"script_code_logged_at_start": true
|
| 27 |
+
}
|
logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_62c86858-e544-45fa-8e10-20927225390f.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"seed": 43,
|
| 4 |
+
"optimizer_mode": 9,
|
| 5 |
+
"model_parameterization": "gated",
|
| 6 |
+
"adam_lr": 0.0002,
|
| 7 |
+
"muon_lr": 0.0005,
|
| 8 |
+
"base_dir": "logs_new_MUON_large_reshape_svd_gated/ori"
|
| 9 |
+
},
|
| 10 |
+
"hyperparameters": {
|
| 11 |
+
"input_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 12 |
+
"input_val_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 13 |
+
"batch_size": 960,
|
| 14 |
+
"device_batch_size": 24,
|
| 15 |
+
"sequence_length": 1024,
|
| 16 |
+
"num_iterations": 6000,
|
| 17 |
+
"learning_rate": 0.0018,
|
| 18 |
+
"warmup_iters": 0,
|
| 19 |
+
"warmdown_iters": 0,
|
| 20 |
+
"weight_decay": 0,
|
| 21 |
+
"val_loss_every": 125,
|
| 22 |
+
"val_tokens": 10420224,
|
| 23 |
+
"save_every": 0
|
| 24 |
+
},
|
| 25 |
+
"run_uuid_for_log": "9ebd0b66-cbf1-499b-a4e8-6a3e8c6248a9",
|
| 26 |
+
"script_code_logged_at_start": true
|
| 27 |
+
}
|
logs_new_MUON_large_reshape_svd_gated/ori/mode_9_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/training_log_9ebd0b66-cbf1-499b-a4e8-6a3e8c6248a9.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_new_MUON_large_reshape_svd_gated/svd/mode_0_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"seed": 42,
|
| 4 |
+
"optimizer_mode": 0,
|
| 5 |
+
"model_parameterization": "gated",
|
| 6 |
+
"adam_lr": 0.0002,
|
| 7 |
+
"muon_lr": 0.0005,
|
| 8 |
+
"base_dir": "logs_new_MUON_large_reshape_svd_gated/svd"
|
| 9 |
+
},
|
| 10 |
+
"hyperparameters": {
|
| 11 |
+
"input_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 12 |
+
"input_val_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 13 |
+
"batch_size": 960,
|
| 14 |
+
"device_batch_size": 24,
|
| 15 |
+
"sequence_length": 1024,
|
| 16 |
+
"num_iterations": 6000,
|
| 17 |
+
"learning_rate": 0.0018,
|
| 18 |
+
"warmup_iters": 0,
|
| 19 |
+
"warmdown_iters": 0,
|
| 20 |
+
"weight_decay": 0,
|
| 21 |
+
"val_loss_every": 125,
|
| 22 |
+
"val_tokens": 10420224,
|
| 23 |
+
"save_every": 0
|
| 24 |
+
},
|
| 25 |
+
"run_uuid_for_log": "533563b5-4895-416e-8ea4-9baaf8e74134",
|
| 26 |
+
"script_code_logged_at_start": true
|
| 27 |
+
}
|
logs_new_MUON_large_reshape_svd_gated/svd/mode_0_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_533563b5-4895-416e-8ea4-9baaf8e74134.txt
ADDED
|
@@ -0,0 +1,856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
with open(sys.argv[0]) as f:
|
| 5 |
+
code = f.read() # read the code of this file ASAP, for logging
|
| 6 |
+
import uuid
|
| 7 |
+
import time
|
| 8 |
+
import copy
|
| 9 |
+
import glob
|
| 10 |
+
from dataclasses import dataclass, asdict
|
| 11 |
+
from functools import lru_cache
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import argparse # Keep argparse for --unet and potentially --optimizer_mode
|
| 14 |
+
import json
|
| 15 |
+
import random
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 19 |
+
import torch
|
| 20 |
+
torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems
|
| 21 |
+
from torch import Tensor, nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
import torch.distributed as dist
|
| 24 |
+
# use of FlexAttention contributed by @KoszarskyB
|
| 25 |
+
from torch.nn.attention.flex_attention import BlockMask, flex_attention
|
| 26 |
+
sys.path.append("/home/aiops/zhangfz/MUON_theory/modded-nanogpt") # Already present
|
| 27 |
+
from optimizers.MUON_new_large_nes import Muon
|
| 28 |
+
from utils.float_compute import mm_op, backward as mm_backward_custom, setup_context as mm_setup_context_custom # Renamed
|
| 29 |
+
import torch._inductor.config as config
|
| 30 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 31 |
+
from kn_util.utils import setup_debugpy
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# -----------------------------------------------------------------------------
|
| 35 |
+
# Seeding Function
|
| 36 |
+
def set_seed(seed):
|
| 37 |
+
random.seed(seed)
|
| 38 |
+
np.random.seed(seed)
|
| 39 |
+
torch.manual_seed(seed)
|
| 40 |
+
if torch.cuda.is_available():
|
| 41 |
+
torch.cuda.manual_seed_all(seed)
|
| 42 |
+
print(f"PRINT: Set seed to {seed}", flush=True) # Print immediately for all ranks
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# ---- ADD: spectral metrics helper ----
|
| 46 |
+
def calculate_svd_metrics(matrix: torch.Tensor, *, topk: int = 10):
|
| 47 |
+
"""
|
| 48 |
+
Returns dict with:
|
| 49 |
+
- entropy_norm: normalized SVD entropy
|
| 50 |
+
- erank: effective rank = exp(Shannon entropy of p)
|
| 51 |
+
- topk_energy: sum of top-k p_i (energy fraction in the top-k singular values)
|
| 52 |
+
- q75_q25: ratio of 75th to 25th percentile of eigenvalues (sigma^2)
|
| 53 |
+
"""
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
s = torch.linalg.svdvals(matrix.detach().to('cpu', torch.float32))
|
| 56 |
+
s = s[s > 1e-9]
|
| 57 |
+
n = s.numel()
|
| 58 |
+
if n == 0:
|
| 59 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 60 |
+
|
| 61 |
+
s2 = s * s
|
| 62 |
+
S2_sum = float(torch.sum(s2))
|
| 63 |
+
if S2_sum == 0.0:
|
| 64 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 65 |
+
|
| 66 |
+
p = s2 / S2_sum # energy distribution
|
| 67 |
+
# Shannon entropy H (natural log)
|
| 68 |
+
H = float(torch.sum(torch.special.entr(p)))
|
| 69 |
+
entropy_norm = H / np.log(max(n, 2))
|
| 70 |
+
erank = float(np.exp(H))
|
| 71 |
+
|
| 72 |
+
k = min(topk, n)
|
| 73 |
+
topk_energy = float(torch.topk(p, k).values.sum())
|
| 74 |
+
|
| 75 |
+
# eigenvalues = s^2, use quantiles on s^2
|
| 76 |
+
q25 = float(torch.quantile(s2, 0.25))
|
| 77 |
+
q75 = float(torch.quantile(s2, 0.75))
|
| 78 |
+
q75_q25 = (q75 / q25) if q25 > 0 else float('inf')
|
| 79 |
+
|
| 80 |
+
return dict(
|
| 81 |
+
entropy_norm=entropy_norm,
|
| 82 |
+
erank=erank,
|
| 83 |
+
topk_energy=topk_energy,
|
| 84 |
+
q75_q25=q75_q25,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# -----------------------------------------------------------------------------
|
| 89 |
+
# Our own simple Distributed Data Loader
|
| 90 |
+
|
| 91 |
+
def _peek_data_shard(filename):
|
| 92 |
+
# only reads the header, returns header data
|
| 93 |
+
with open(filename, "rb") as f:
|
| 94 |
+
# first read the header, which is 256 int32 integers (4 bytes each)
|
| 95 |
+
header = np.frombuffer(f.read(256*4), dtype=np.int32)
|
| 96 |
+
if header[0] != 20240520:
|
| 97 |
+
print("ERROR: magic number mismatch in the data .bin file!")
|
| 98 |
+
print("---> HINT: Are you passing in a correct file with --input_bin?")
|
| 99 |
+
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
|
| 100 |
+
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
|
| 101 |
+
exit(1)
|
| 102 |
+
assert header[1] == 1, "unsupported version"
|
| 103 |
+
ntok = header[2] # number of tokens (claimed)
|
| 104 |
+
return ntok # for now just return the number of tokens
|
| 105 |
+
|
| 106 |
+
def _load_data_shard(filename):
|
| 107 |
+
with open(filename, "rb") as f:
|
| 108 |
+
# first read the header, which is 256 int32 integers (4 bytes each)
|
| 109 |
+
header = np.frombuffer(f.read(256*4), dtype=np.int32)
|
| 110 |
+
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
|
| 111 |
+
assert header[1] == 1, "unsupported version"
|
| 112 |
+
ntok = header[2] # number of tokens (claimed)
|
| 113 |
+
# the rest of it are tokens, stored as uint16
|
| 114 |
+
tokens = np.frombuffer(f.read(), dtype=np.uint16)
|
| 115 |
+
assert len(tokens) == ntok, "number of tokens read does not match header?"
|
| 116 |
+
return tokens
|
| 117 |
+
|
| 118 |
+
class DistributedDataLoader:
|
| 119 |
+
def __init__(self, filename_pattern, B, T, process_rank, num_processes):
|
| 120 |
+
self.process_rank = process_rank
|
| 121 |
+
self.num_processes = num_processes
|
| 122 |
+
self.B = B
|
| 123 |
+
self.T = T
|
| 124 |
+
|
| 125 |
+
# glob files that match the pattern
|
| 126 |
+
self.files = sorted(glob.glob(filename_pattern))
|
| 127 |
+
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
|
| 128 |
+
|
| 129 |
+
# load and validate all data shards, count number of tokens in total
|
| 130 |
+
ntok_total = 0
|
| 131 |
+
for fname in self.files:
|
| 132 |
+
shard_ntok = _peek_data_shard(fname)
|
| 133 |
+
assert shard_ntok >= num_processes * B * T + 1
|
| 134 |
+
ntok_total += int(shard_ntok)
|
| 135 |
+
self.ntok_total = ntok_total
|
| 136 |
+
|
| 137 |
+
# kick things off
|
| 138 |
+
self.reset()
|
| 139 |
+
|
| 140 |
+
def reset(self):
|
| 141 |
+
self.current_shard = 0
|
| 142 |
+
self.current_position = self.process_rank * self.B * self.T
|
| 143 |
+
self.tokens = _load_data_shard(self.files[self.current_shard])
|
| 144 |
+
|
| 145 |
+
def advance(self): # advance to next data shard
|
| 146 |
+
self.current_shard = (self.current_shard + 1) % len(self.files)
|
| 147 |
+
self.current_position = self.process_rank * self.B * self.T
|
| 148 |
+
self.tokens = _load_data_shard(self.files[self.current_shard])
|
| 149 |
+
|
| 150 |
+
def next_batch(self):
|
| 151 |
+
B = self.B
|
| 152 |
+
T = self.T
|
| 153 |
+
buf = self.tokens[self.current_position : self.current_position+B*T+1]
|
| 154 |
+
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
|
| 155 |
+
x = (buf[:-1]).view(B, T) # inputs
|
| 156 |
+
y = (buf[1:]).view(B, T) # targets
|
| 157 |
+
# advance current position and load next shard if necessary
|
| 158 |
+
self.current_position += B * T * self.num_processes
|
| 159 |
+
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
|
| 160 |
+
self.advance()
|
| 161 |
+
return x.cuda(), y.cuda()
|
| 162 |
+
|
| 163 |
+
# -----------------------------------------------------------------------------
|
| 164 |
+
# int main
|
| 165 |
+
|
| 166 |
+
@dataclass
|
| 167 |
+
class Hyperparameters:
|
| 168 |
+
# data hyperparams
|
| 169 |
+
input_bin : str = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin"
|
| 170 |
+
input_val_bin : str = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin"
|
| 171 |
+
# optimization hyperparams
|
| 172 |
+
batch_size : int = 8*120 # 8*120 # batch size, in sequences, across all devices
|
| 173 |
+
device_batch_size : int = 24 # batch size, in sequences, per device
|
| 174 |
+
sequence_length : int = 1024 # sequence length, in tokens
|
| 175 |
+
num_iterations : int = 6000 # number of iterations to run
|
| 176 |
+
learning_rate : float = 0.0036 / 2
|
| 177 |
+
warmup_iters : int = 0
|
| 178 |
+
warmdown_iters : int = 0 # number of iterations of linear warmup/warmdown for triangular or trapezoidal schedule
|
| 179 |
+
weight_decay : float = 0
|
| 180 |
+
# evaluation and logging hyperparams
|
| 181 |
+
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
|
| 182 |
+
val_tokens : int = 10420224 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
|
| 183 |
+
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
|
| 184 |
+
args = Hyperparameters()
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# -----------------------------------------------------------------------------
|
| 189 |
+
# int main
|
| 190 |
+
# setup_debugpy(force=True)
|
| 191 |
+
parser = argparse.ArgumentParser(description="NanoGPT Training Script with Muon")
|
| 192 |
+
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
|
| 193 |
+
# --- MODIFICATION: Add optimizer_mode as a CLI argument ---
|
| 194 |
+
parser.add_argument("--optimizer_mode", type=int, default=0,
|
| 195 |
+
help="Defines how Muon is applied. "
|
| 196 |
+
"0: Muon(All Hidden Attn+MLP - original); "
|
| 197 |
+
"1: Muon(QK Attn)/Adam(VO Attn,MLP); "
|
| 198 |
+
"2: Muon(VO Attn)/Adam(QK Attn,MLP); "
|
| 199 |
+
"3: Muon(All Attn)/Adam(MLP); "
|
| 200 |
+
"4: Muon(MLP)/Adam(All Attn)"
|
| 201 |
+
"5: All Adam (No Muon, all applicable matrices to Adam)."
|
| 202 |
+
"6: Muon(W_2 MLP)/Adam(attn, W_1 MLP)."
|
| 203 |
+
"7: Muon(VO Attn, MLP)/Adam(QK Attn)."
|
| 204 |
+
"8: Muon(VO Attn, W_2 MLP)/Adam(QK Attn, W_1 MLP)."
|
| 205 |
+
)
|
| 206 |
+
parser.add_argument("--model_parameterization", type=str, default="whole",choices=["whole","qkvo", "norope", "gated"])
|
| 207 |
+
parser.add_argument("--adam_lr", type=float, default=0.008, help="Learning rate for Adam matrices")
|
| 208 |
+
parser.add_argument("--muon_lr", type=float, default=0.05, help="Learning rate for Muon matrices")
|
| 209 |
+
parser.add_argument("--base_dir", type=str, default="logs_new_MUON_large/test", help="Base directory for logs")
|
| 210 |
+
exp_args = parser.parse_args()
|
| 211 |
+
set_seed(exp_args.seed)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# set up DDP (distributed data parallel). torchrun sets this env variable
|
| 216 |
+
assert torch.cuda.is_available()
|
| 217 |
+
dist.init_process_group(backend='nccl')
|
| 218 |
+
ddp_rank = int(os.environ['RANK'])
|
| 219 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
| 220 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
| 221 |
+
device = f'cuda:{ddp_local_rank}'
|
| 222 |
+
torch.cuda.set_device(device)
|
| 223 |
+
print(f"using device: {device}")
|
| 224 |
+
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
|
| 225 |
+
|
| 226 |
+
logfile = None
|
| 227 |
+
run_dir_path_str = None
|
| 228 |
+
base_log_dir = Path(exp_args.base_dir)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
if master_process:
|
| 232 |
+
import subprocess
|
| 233 |
+
set_seed(exp_args.seed)
|
| 234 |
+
|
| 235 |
+
# Construct folder name based on config and seed
|
| 236 |
+
# run_folder_name = f"mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_adam_lr_{exp_args.adam_lr}_seed_{exp_args.seed}"
|
| 237 |
+
run_folder_name = f"mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_muon_lr_{exp_args.muon_lr}_adam_lr_{exp_args.adam_lr}_seed_{exp_args.seed}"
|
| 238 |
+
run_dir_path = base_log_dir / run_folder_name
|
| 239 |
+
run_dir_path.mkdir(parents=True, exist_ok=True)
|
| 240 |
+
run_dir_path_str = str(run_dir_path)
|
| 241 |
+
|
| 242 |
+
run_uuid = uuid.uuid4()
|
| 243 |
+
logfile = run_dir_path / f"training_log_{run_uuid}.txt"
|
| 244 |
+
print(f"Logging to: {logfile}")
|
| 245 |
+
|
| 246 |
+
# Save configuration
|
| 247 |
+
config_to_save = {
|
| 248 |
+
"cli_args": vars(exp_args),
|
| 249 |
+
"hyperparameters": {k: v for k, v in args.__class__.__dict__.items() if not k.startswith('__') and not callable(v)},
|
| 250 |
+
"run_uuid_for_log": str(run_uuid),
|
| 251 |
+
"script_code_logged_at_start": True
|
| 252 |
+
}
|
| 253 |
+
config_file_path = run_dir_path / "config.json"
|
| 254 |
+
with open(config_file_path, "w") as f:
|
| 255 |
+
json.dump(config_to_save, f, indent=4)
|
| 256 |
+
print(f"Saved configuration to: {config_file_path}")
|
| 257 |
+
|
| 258 |
+
# convenience variables
|
| 259 |
+
B, T = args.device_batch_size, args.sequence_length
|
| 260 |
+
# calculate the number of steps to take in the val loop.
|
| 261 |
+
print(f"args.val_tokens: {args.val_tokens}, args.batch_size: {args.batch_size}, B: {B}, T: {T}, ddp_world_size: {ddp_world_size}")
|
| 262 |
+
assert args.val_tokens % (B * T * ddp_world_size) == 0
|
| 263 |
+
val_steps = args.val_tokens // (B * T * ddp_world_size)
|
| 264 |
+
# calculate the steps of gradient accumulation required to attain the desired global batch size.
|
| 265 |
+
assert args.batch_size % (B * ddp_world_size) == 0
|
| 266 |
+
train_accumulation_steps = args.batch_size // (B * ddp_world_size)
|
| 267 |
+
|
| 268 |
+
# load tokens
|
| 269 |
+
train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size)
|
| 270 |
+
val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size)
|
| 271 |
+
if master_process:
|
| 272 |
+
print(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
|
| 273 |
+
print(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
|
| 274 |
+
x, y = train_loader.next_batch()
|
| 275 |
+
|
| 276 |
+
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
|
| 277 |
+
# this originates from Karpathy's experiments.
|
| 278 |
+
num_vocab = 50304
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
if exp_args.model_parameterization == "qkvo":
|
| 283 |
+
from models.nano_GPT_qkvo_large import GPT, GPTConfig
|
| 284 |
+
# model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=25, n_head=12, n_embd=1536))
|
| 285 |
+
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=36, n_head=20, n_embd=1280))
|
| 286 |
+
elif exp_args.model_parameterization == "gated":
|
| 287 |
+
from models.nano_GPT_gated_large import GPT, GPTConfig
|
| 288 |
+
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=27, n_head=20, n_embd=1280))
|
| 289 |
+
|
| 290 |
+
if master_process:
|
| 291 |
+
print(sum(p.numel() for p in model.parameters()))
|
| 292 |
+
model = model.cuda()
|
| 293 |
+
if hasattr(config, "coordinate_descent_tuning"):
|
| 294 |
+
config.coordinate_descent_tuning = True # suggested by @Chillee
|
| 295 |
+
model = torch.compile(model)
|
| 296 |
+
# here we wrap model into DDP container
|
| 297 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
| 298 |
+
raw_model = model.module # always contains the "raw" unwrapped model
|
| 299 |
+
ctx = torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16)
|
| 300 |
+
|
| 301 |
+
# for name, param in raw_model.named_parameters():
|
| 302 |
+
# print(name, param.shape)
|
| 303 |
+
|
| 304 |
+
if exp_args.model_parameterization == "qkvo" :
|
| 305 |
+
print("PRINT: Collecting parameters for optimizers...")
|
| 306 |
+
head_params = [raw_model.lm_head.weight]
|
| 307 |
+
# embed_params = [raw_model.transformer.wte.weight]
|
| 308 |
+
|
| 309 |
+
# Granular collection for attention and MLP parts
|
| 310 |
+
attn_q_params = []
|
| 311 |
+
attn_k_params = []
|
| 312 |
+
attn_v_params = []
|
| 313 |
+
attn_o_params = [] # W_O from c_proj
|
| 314 |
+
mlp_fc_params = []
|
| 315 |
+
mlp_proj_params = []
|
| 316 |
+
|
| 317 |
+
for block_module in raw_model.transformer.h:
|
| 318 |
+
if block_module.attn is not None:
|
| 319 |
+
# These attributes (c_q, c_k, c_v) MUST exist in your CausalSelfAttention class
|
| 320 |
+
if hasattr(block_module.attn, 'c_q'): attn_q_params.append(block_module.attn.c_q.weight)
|
| 321 |
+
else:
|
| 322 |
+
print(f"PRINT: Warning: c_q not found in attn module of a block.")
|
| 323 |
+
if hasattr(block_module.attn, 'c_k'): attn_k_params.append(block_module.attn.c_k.weight)
|
| 324 |
+
else: print(f"PRINT: Warning: c_k not found in attn module of a block.")
|
| 325 |
+
if hasattr(block_module.attn, 'c_v'): attn_v_params.append(block_module.attn.c_v.weight)
|
| 326 |
+
else: print(f"PRINT: Warning: c_v not found in attn module of a block.")
|
| 327 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 328 |
+
if block_module.mlp is not None:
|
| 329 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 330 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 331 |
+
|
| 332 |
+
# Combine into logical groups for experiments
|
| 333 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 334 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 335 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 336 |
+
mlp_w1_group = mlp_fc_params
|
| 337 |
+
mlp_w2_group = mlp_proj_params
|
| 338 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params
|
| 339 |
+
|
| 340 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 341 |
+
# matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 342 |
+
matrix_params_for_scalar_check = set(head_params + all_attn_matrices + all_mlp_matrices)
|
| 343 |
+
scalar_params = [p for n, p in raw_model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 344 |
+
for p_scalar in scalar_params: # Sanity check
|
| 345 |
+
if p_scalar.ndim >=2:
|
| 346 |
+
print(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.")
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
# Determine parameter distribution based on optimizer_mode
|
| 350 |
+
muon_params_target_list = []
|
| 351 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 352 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 353 |
+
|
| 354 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 355 |
+
|
| 356 |
+
print(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}")
|
| 357 |
+
|
| 358 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 359 |
+
print(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.")
|
| 360 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 361 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 362 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 363 |
+
print(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 364 |
+
muon_params_target_list = attn_qk_group
|
| 365 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 366 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 367 |
+
print(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 368 |
+
muon_params_target_list = attn_vo_group
|
| 369 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 370 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 371 |
+
print(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).")
|
| 372 |
+
muon_params_target_list = all_attn_matrices
|
| 373 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 374 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 375 |
+
print(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).")
|
| 376 |
+
muon_params_target_list = all_mlp_matrices
|
| 377 |
+
adam_matrix_target_list = all_attn_matrices
|
| 378 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 379 |
+
print(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).")
|
| 380 |
+
muon_params_target_list = []
|
| 381 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 382 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 383 |
+
print(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 384 |
+
muon_params_target_list = mlp_w2_group
|
| 385 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 386 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 387 |
+
print(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 388 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 389 |
+
adam_matrix_target_list = attn_qk_group
|
| 390 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 391 |
+
print(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 392 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 393 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 394 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 395 |
+
print(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 396 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 397 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 398 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 399 |
+
print(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 400 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 401 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 402 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 403 |
+
print(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 404 |
+
muon_params_target_list = mlp_w1_group
|
| 405 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 406 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 407 |
+
print(f"PRINT: Mode 12: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 408 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 409 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 410 |
+
elif current_optimizer_mode == 13:
|
| 411 |
+
print(f"PRINT: Mode 13: Muon on W_2, W_O. Adam on V Attn, QK Attn, W_1 (Adam LR: {adam_matrix_lr}).")
|
| 412 |
+
muon_params_target_list = attn_o_params + mlp_w2_group
|
| 413 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params + mlp_w1_group
|
| 414 |
+
elif current_optimizer_mode == 14:
|
| 415 |
+
print(f"PRINT: Mode 14: Muon on W_O. Adam on V Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 416 |
+
muon_params_target_list = attn_o_params
|
| 417 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params +all_mlp_matrices
|
| 418 |
+
elif current_optimizer_mode == 15:
|
| 419 |
+
print(f"PRINT: Mode 15: Muon on W_V. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 420 |
+
muon_params_target_list = attn_v_params
|
| 421 |
+
adam_matrix_target_list = attn_qk_group + attn_o_params +all_mlp_matrices
|
| 422 |
+
elif current_optimizer_mode == 16:
|
| 423 |
+
print(f"PRINT: Mode 15: Muon on QKV. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 424 |
+
muon_params_target_list = attn_v_params + attn_qk_group
|
| 425 |
+
adam_matrix_target_list = attn_o_params +all_mlp_matrices
|
| 426 |
+
else:
|
| 427 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 428 |
+
|
| 429 |
+
# Adam optimizer setup
|
| 430 |
+
adam_param_groups_config = [
|
| 431 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 432 |
+
# dict(params=embed_params, lr=adam_matrix_lr),
|
| 433 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 434 |
+
]
|
| 435 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 436 |
+
if adam_matrix_target_list:
|
| 437 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 438 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 439 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 440 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 441 |
+
|
| 442 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 443 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 444 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.9, 0.95), eps=1e-10, fused=True)
|
| 445 |
+
optimizers = [optimizer1] # Start with Adam
|
| 446 |
+
|
| 447 |
+
# Muon optimizer setup
|
| 448 |
+
# if muon_params_target_list:
|
| 449 |
+
# # Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 450 |
+
# flat_unique_muon_params = []
|
| 451 |
+
# seen_muon_ids = set()
|
| 452 |
+
# for sublist_or_p in muon_params_target_list:
|
| 453 |
+
# for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 454 |
+
# if p is not None and id(p) not in seen_muon_ids:
|
| 455 |
+
# flat_unique_muon_params.append(p)
|
| 456 |
+
# seen_muon_ids.add(id(p))
|
| 457 |
+
|
| 458 |
+
# muon_param_groups_config = []
|
| 459 |
+
# if flat_unique_muon_params:
|
| 460 |
+
# muon_param_groups_config.append(dict(params=flat_unique_muon_params, lr=exp_args.muon_lr))
|
| 461 |
+
|
| 462 |
+
# if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 463 |
+
# optimizer2 = Muon(muon_param_groups_config, lr=exp_args.muon_lr, momentum=0.95,rank=ddp_rank, world_size=ddp_world_size) # Pass nesterov, ns_steps
|
| 464 |
+
# optimizers.append(optimizer2)
|
| 465 |
+
# else:
|
| 466 |
+
# print("PRINT: Muon optimizer not created as its target parameter list was empty.")
|
| 467 |
+
# optimizer2 = None # Explicitly set to None if not created
|
| 468 |
+
# else:
|
| 469 |
+
# print("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).")
|
| 470 |
+
# optimizer2 = None # Explicitly set to None
|
| 471 |
+
# Muon optimizer setup
|
| 472 |
+
if muon_params_target_list:
|
| 473 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 474 |
+
flat_unique_muon_params = []
|
| 475 |
+
seen_muon_ids = set()
|
| 476 |
+
for sublist_or_p in muon_params_target_list:
|
| 477 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 478 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 479 |
+
flat_unique_muon_params.append(p)
|
| 480 |
+
seen_muon_ids.add(id(p))
|
| 481 |
+
|
| 482 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 483 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95,rank=ddp_rank, world_size=ddp_world_size) # Pass nesterov, ns_steps
|
| 484 |
+
optimizers.append(optimizer2)
|
| 485 |
+
else:
|
| 486 |
+
print("PRINT: Muon optimizer not created as its target parameter list was empty.")
|
| 487 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 488 |
+
else:
|
| 489 |
+
print("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).")
|
| 490 |
+
optimizer2 = None # Explicitly set to None
|
| 491 |
+
|
| 492 |
+
print(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}")
|
| 493 |
+
if optimizer2:
|
| 494 |
+
print(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.")
|
| 495 |
+
|
| 496 |
+
# Set up parameter groups for SVD analysis
|
| 497 |
+
matrix_groups_for_svd = {}
|
| 498 |
+
if master_process:
|
| 499 |
+
matrix_groups_for_svd = {
|
| 500 |
+
"attn_qk": attn_qk_group,
|
| 501 |
+
"attn_vo": attn_vo_group,
|
| 502 |
+
"mlp_w1": mlp_w1_group,
|
| 503 |
+
"mlp_w2": mlp_w2_group
|
| 504 |
+
}
|
| 505 |
+
|
| 506 |
+
elif exp_args.model_parameterization == "gated":
|
| 507 |
+
print("PRINT: Collecting parameters for optimizers...")
|
| 508 |
+
head_params = [raw_model.lm_head.weight]
|
| 509 |
+
# embed_params = [raw_model.transformer.wte.weight]
|
| 510 |
+
|
| 511 |
+
# Granular collection for attention and MLP parts
|
| 512 |
+
attn_q_params = []
|
| 513 |
+
attn_k_params = []
|
| 514 |
+
attn_v_params = []
|
| 515 |
+
attn_o_params = [] # W_O from c_proj
|
| 516 |
+
mlp_fc_params = []
|
| 517 |
+
mlp_proj_params = []
|
| 518 |
+
mlp_up_params = []
|
| 519 |
+
|
| 520 |
+
for block_module in raw_model.transformer.h:
|
| 521 |
+
if block_module.attn is not None:
|
| 522 |
+
# These attributes (c_q, c_k, c_v) MUST exist in your CausalSelfAttention class
|
| 523 |
+
if hasattr(block_module.attn, 'c_q'): attn_q_params.append(block_module.attn.c_q.weight)
|
| 524 |
+
else:
|
| 525 |
+
print(f"PRINT: Warning: c_q not found in attn module of a block.")
|
| 526 |
+
if hasattr(block_module.attn, 'c_k'): attn_k_params.append(block_module.attn.c_k.weight)
|
| 527 |
+
else: print(f"PRINT: Warning: c_k not found in attn module of a block.")
|
| 528 |
+
if hasattr(block_module.attn, 'c_v'): attn_v_params.append(block_module.attn.c_v.weight)
|
| 529 |
+
else: print(f"PRINT: Warning: c_v not found in attn module of a block.")
|
| 530 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 531 |
+
if block_module.mlp is not None:
|
| 532 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 533 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 534 |
+
mlp_up_params.append(block_module.mlp.c_up.weight)
|
| 535 |
+
|
| 536 |
+
# Combine into logical groups for experiments
|
| 537 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 538 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 539 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 540 |
+
mlp_w1_group = mlp_fc_params
|
| 541 |
+
mlp_w2_group = mlp_proj_params
|
| 542 |
+
mlp_up_group = mlp_up_params
|
| 543 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params+ mlp_up_params
|
| 544 |
+
|
| 545 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 546 |
+
# matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 547 |
+
matrix_params_for_scalar_check = set(head_params + all_attn_matrices + all_mlp_matrices)
|
| 548 |
+
scalar_params = [p for n, p in raw_model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 549 |
+
for p_scalar in scalar_params: # Sanity check
|
| 550 |
+
if p_scalar.ndim >=2:
|
| 551 |
+
print(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.")
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
# Determine parameter distribution based on optimizer_mode
|
| 555 |
+
muon_params_target_list = []
|
| 556 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 557 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 558 |
+
|
| 559 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 560 |
+
|
| 561 |
+
print(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}")
|
| 562 |
+
|
| 563 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 564 |
+
print(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.")
|
| 565 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 566 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 567 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 568 |
+
print(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 569 |
+
muon_params_target_list = attn_qk_group
|
| 570 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 571 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 572 |
+
print(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 573 |
+
muon_params_target_list = attn_vo_group
|
| 574 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 575 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 576 |
+
print(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).")
|
| 577 |
+
muon_params_target_list = all_attn_matrices
|
| 578 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 579 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 580 |
+
print(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).")
|
| 581 |
+
muon_params_target_list = all_mlp_matrices
|
| 582 |
+
adam_matrix_target_list = all_attn_matrices
|
| 583 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 584 |
+
print(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).")
|
| 585 |
+
muon_params_target_list = []
|
| 586 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 587 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 588 |
+
print(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 589 |
+
muon_params_target_list = mlp_w2_group
|
| 590 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 591 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 592 |
+
print(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 593 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 594 |
+
adam_matrix_target_list = attn_qk_group
|
| 595 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 596 |
+
print(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 597 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 598 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 599 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 600 |
+
print(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 601 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 602 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 603 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 604 |
+
print(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 605 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 606 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 607 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 608 |
+
print(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 609 |
+
muon_params_target_list = mlp_w1_group
|
| 610 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 611 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 612 |
+
print(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 613 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 614 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 615 |
+
elif current_optimizer_mode == 13:
|
| 616 |
+
print(f"PRINT: Mode 13: Muon on W_2, W_O. Adam on V Attn, QK Attn, W_1 (Adam LR: {adam_matrix_lr}).")
|
| 617 |
+
muon_params_target_list = attn_o_params + mlp_w2_group
|
| 618 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params + mlp_w1_group
|
| 619 |
+
elif current_optimizer_mode == 14:
|
| 620 |
+
print(f"PRINT: Mode 14: Muon on W_O. Adam on V Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 621 |
+
muon_params_target_list = attn_o_params
|
| 622 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params +all_mlp_matrices
|
| 623 |
+
elif current_optimizer_mode == 15:
|
| 624 |
+
print(f"PRINT: Mode 15: Muon on W_V. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 625 |
+
muon_params_target_list = attn_v_params
|
| 626 |
+
adam_matrix_target_list = attn_qk_group + attn_o_params +all_mlp_matrices
|
| 627 |
+
elif current_optimizer_mode == 16:
|
| 628 |
+
print(f"PRINT: Mode 15: Muon on QKV. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 629 |
+
muon_params_target_list = attn_v_params + attn_qk_group
|
| 630 |
+
adam_matrix_target_list = attn_o_params +all_mlp_matrices
|
| 631 |
+
else:
|
| 632 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 633 |
+
|
| 634 |
+
# Adam optimizer setup
|
| 635 |
+
adam_param_groups_config = [
|
| 636 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 637 |
+
# dict(params=embed_params, lr=adam_matrix_lr),
|
| 638 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 639 |
+
]
|
| 640 |
+
|
| 641 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 642 |
+
if adam_matrix_target_list:
|
| 643 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 644 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 645 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 646 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 647 |
+
|
| 648 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 649 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 650 |
+
# print(f"PRINT: The length of Adam param groups config: {len(adam_param_groups_config)}")
|
| 651 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.9, 0.95), eps=1e-10, fused=True)
|
| 652 |
+
optimizers = [optimizer1] # Start with Adam
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
if muon_params_target_list:
|
| 656 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 657 |
+
flat_unique_muon_params = []
|
| 658 |
+
seen_muon_ids = set()
|
| 659 |
+
for sublist_or_p in muon_params_target_list:
|
| 660 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 661 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 662 |
+
flat_unique_muon_params.append(p)
|
| 663 |
+
seen_muon_ids.add(id(p))
|
| 664 |
+
|
| 665 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 666 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95,rank=ddp_rank, world_size=ddp_world_size) # Pass nesterov, ns_steps
|
| 667 |
+
optimizers.append(optimizer2)
|
| 668 |
+
else:
|
| 669 |
+
print("PRINT: Muon optimizer not created as its target parameter list was empty.")
|
| 670 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 671 |
+
else:
|
| 672 |
+
print("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).")
|
| 673 |
+
optimizer2 = None # Explicitly set to None
|
| 674 |
+
|
| 675 |
+
print(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}")
|
| 676 |
+
if optimizer2:
|
| 677 |
+
print(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.")
|
| 678 |
+
|
| 679 |
+
# Set up parameter groups for SVD analysis
|
| 680 |
+
matrix_groups_for_svd = {
|
| 681 |
+
"attn_qk": attn_qk_group,
|
| 682 |
+
"attn_vo": attn_vo_group,
|
| 683 |
+
"mlp_w1": mlp_w1_group, # c_fc only
|
| 684 |
+
"mlp_up": mlp_up_group, # c_up only
|
| 685 |
+
"mlp_w2": mlp_proj_params
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
+
# optimizer1 = torch.optim.AdamW(raw_model.lm_head.parameters(), lr=args.learning_rate, betas=(0.9, 0.95),
|
| 689 |
+
# weight_decay=args.weight_decay, fused=True)
|
| 690 |
+
# optimizer2 = Muon(raw_model.transformer.h.parameters(), lr=0.1*args.learning_rate, momentum=0.95,
|
| 691 |
+
# rank=ddp_rank, world_size=ddp_world_size)
|
| 692 |
+
|
| 693 |
+
# optimizers = [optimizer1, optimizer2]
|
| 694 |
+
# learning rate decay scheduler (linear warmup and warmdown)
|
| 695 |
+
def get_lr(it):
|
| 696 |
+
assert it <= args.num_iterations
|
| 697 |
+
# 1) linear warmup for warmup_iters steps
|
| 698 |
+
if it < args.warmup_iters:
|
| 699 |
+
return (it+1) / args.warmup_iters
|
| 700 |
+
# 2) constant lr for a while
|
| 701 |
+
elif it < args.num_iterations - args.warmdown_iters:
|
| 702 |
+
return 1.0
|
| 703 |
+
# 3) linear warmdown
|
| 704 |
+
else:
|
| 705 |
+
decay_ratio = (args.num_iterations - it) / args.warmdown_iters
|
| 706 |
+
return decay_ratio
|
| 707 |
+
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
|
| 708 |
+
|
| 709 |
+
if master_process:
|
| 710 |
+
with open(logfile, "a") as f:
|
| 711 |
+
f.write(code)
|
| 712 |
+
|
| 713 |
+
training_time_ms = 0
|
| 714 |
+
# start the clock
|
| 715 |
+
torch.cuda.synchronize()
|
| 716 |
+
t0 = time.time()
|
| 717 |
+
# begin training
|
| 718 |
+
train_loader.reset()
|
| 719 |
+
for step in range(args.num_iterations + 1):
|
| 720 |
+
last_step = (step == args.num_iterations)
|
| 721 |
+
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
|
| 722 |
+
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
|
| 723 |
+
# steps with dummy data first, and then re-initialize the model and reset the loader.
|
| 724 |
+
if step == 10:
|
| 725 |
+
training_time_ms = 0
|
| 726 |
+
t0 = time.time()
|
| 727 |
+
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
|
| 728 |
+
|
| 729 |
+
# once in a while evaluate the validation dataset
|
| 730 |
+
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
|
| 731 |
+
# stop the clock
|
| 732 |
+
torch.cuda.synchronize()
|
| 733 |
+
training_time_ms += 1000 * (time.time() - t0)
|
| 734 |
+
# run validation batches
|
| 735 |
+
with torch.no_grad():
|
| 736 |
+
val_loader.reset()
|
| 737 |
+
val_loss = 0.0
|
| 738 |
+
for _ in range(val_steps):
|
| 739 |
+
x_val, y_val = val_loader.next_batch()
|
| 740 |
+
with ctx: # of course, we'd like to use no_grad() here too, but that creates a torch.compile error for some reason
|
| 741 |
+
_, loss = model(x_val, y_val, return_logits=False)
|
| 742 |
+
val_loss += loss.detach()
|
| 743 |
+
del loss
|
| 744 |
+
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
|
| 745 |
+
val_loss /= val_steps
|
| 746 |
+
|
| 747 |
+
# SVD metrics calculation
|
| 748 |
+
svd_log_str = ""
|
| 749 |
+
if master_process and 'matrix_groups_for_svd' in locals() and matrix_groups_for_svd:
|
| 750 |
+
TOPK = 10
|
| 751 |
+
svd_results_by_category = {}
|
| 752 |
+
|
| 753 |
+
with torch.no_grad():
|
| 754 |
+
# per-category metrics (average over matrices in the group)
|
| 755 |
+
for name, group_params in matrix_groups_for_svd.items():
|
| 756 |
+
if not group_params:
|
| 757 |
+
continue
|
| 758 |
+
mets = [calculate_svd_metrics(p, topk=TOPK) for p in group_params]
|
| 759 |
+
if mets:
|
| 760 |
+
avg_entropy = float(np.mean([m['entropy_norm'] for m in mets]))
|
| 761 |
+
avg_erank = float(np.mean([m['erank'] for m in mets]))
|
| 762 |
+
avg_topkE = float(np.mean([m['topk_energy'] for m in mets]))
|
| 763 |
+
avg_qratio = float(np.mean([m['q75_q25'] for m in mets]))
|
| 764 |
+
svd_results_by_category[name] = dict(
|
| 765 |
+
entropy=avg_entropy, erank=avg_erank, topkE=avg_topkE, q75_q25=avg_qratio
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
# VO product as another category
|
| 769 |
+
if attn_v_params and attn_o_params:
|
| 770 |
+
vo_mets = []
|
| 771 |
+
num_layers = len(attn_v_params)
|
| 772 |
+
for i in range(num_layers):
|
| 773 |
+
w_v = attn_v_params[i]
|
| 774 |
+
w_o = attn_o_params[i]
|
| 775 |
+
w_ov_product = torch.matmul(w_o, w_v)
|
| 776 |
+
vo_mets.append(calculate_svd_metrics(w_ov_product, topk=TOPK))
|
| 777 |
+
if vo_mets:
|
| 778 |
+
svd_results_by_category['vo_prod'] = dict(
|
| 779 |
+
entropy=float(np.mean([m['entropy_norm'] for m in vo_mets])),
|
| 780 |
+
erank=float(np.mean([m['erank'] for m in vo_mets])),
|
| 781 |
+
topkE=float(np.mean([m['topk_energy'] for m in vo_mets])),
|
| 782 |
+
q75_q25=float(np.mean([m['q75_q25'] for m in vo_mets])),
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
# format logging string (append metrics after entropy)
|
| 786 |
+
svd_log_parts = []
|
| 787 |
+
for name, vals in svd_results_by_category.items():
|
| 788 |
+
svd_log_parts.append(
|
| 789 |
+
f"{name}:H={vals['entropy']:.4f},top{TOPK}E={vals['topkE']:.2f},eRank={vals['erank']:.1f},q75/q25={vals['q75_q25']:.2f}"
|
| 790 |
+
)
|
| 791 |
+
svd_log_str = " ".join(svd_log_parts)
|
| 792 |
+
|
| 793 |
+
# log val loss to console and to logfile
|
| 794 |
+
if master_process:
|
| 795 |
+
print(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} svd_entropy: {svd_log_str} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
|
| 796 |
+
with open(logfile, "a") as f:
|
| 797 |
+
f.write(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} svd_entropy: {svd_log_str} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms\n')
|
| 798 |
+
# start the clock again
|
| 799 |
+
torch.cuda.synchronize()
|
| 800 |
+
t0 = time.time()
|
| 801 |
+
|
| 802 |
+
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
|
| 803 |
+
# stop the clock
|
| 804 |
+
torch.cuda.synchronize()
|
| 805 |
+
training_time_ms += 1000 * (time.time() - t0)
|
| 806 |
+
# save the state of the training process
|
| 807 |
+
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
|
| 808 |
+
if run_dir_path_str:
|
| 809 |
+
save_path = f'{run_dir_path_str}/state_step{step:06d}.pt'
|
| 810 |
+
torch.save(log, save_path)
|
| 811 |
+
# start the clock again
|
| 812 |
+
torch.cuda.synchronize()
|
| 813 |
+
t0 = time.time()
|
| 814 |
+
|
| 815 |
+
# bit confusing: we want to make sure to eval on 0th iteration
|
| 816 |
+
# but also after the very last iteration. so we loop for step <= num_iterations
|
| 817 |
+
# instead of just < num_iterations (one extra due to <=), only to do
|
| 818 |
+
# the validation/sampling one last time, and then we break right here as we're done.
|
| 819 |
+
if last_step:
|
| 820 |
+
break
|
| 821 |
+
|
| 822 |
+
# --------------- TRAINING SECTION BEGIN -----------------
|
| 823 |
+
model.train()
|
| 824 |
+
for i in range(1, train_accumulation_steps+1):
|
| 825 |
+
# forward pass
|
| 826 |
+
with ctx:
|
| 827 |
+
_, loss = model(x, y, return_logits=False)
|
| 828 |
+
train_loss = loss.detach()
|
| 829 |
+
# advance the dataset for the next batch
|
| 830 |
+
x, y = train_loader.next_batch()
|
| 831 |
+
# backward pass
|
| 832 |
+
if i < train_accumulation_steps:
|
| 833 |
+
with model.no_sync(): # there's no need to sync gradients every accumulation step
|
| 834 |
+
loss.backward()
|
| 835 |
+
else:
|
| 836 |
+
loss.backward() # just sync on the last step
|
| 837 |
+
for p in model.parameters():
|
| 838 |
+
p.grad /= train_accumulation_steps
|
| 839 |
+
# step the optimizers and schedulers
|
| 840 |
+
for opt, sched in zip(optimizers, schedulers):
|
| 841 |
+
opt.step()
|
| 842 |
+
sched.step()
|
| 843 |
+
# null the gradients
|
| 844 |
+
model.zero_grad(set_to_none=True)
|
| 845 |
+
# --------------- TRAINING SECTION END -------------------
|
| 846 |
+
# everything that follows now is just diagnostics, prints, logging, etc.
|
| 847 |
+
|
| 848 |
+
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
|
| 849 |
+
if master_process:
|
| 850 |
+
approx_time = training_time_ms + 1000 * (time.time() - t0)
|
| 851 |
+
print(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
|
| 852 |
+
with open(logfile, "a") as f:
|
| 853 |
+
f.write(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms\n")
|
| 854 |
+
|
| 855 |
+
if master_process:
|
| 856 |
+
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
|
logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"seed": 42,
|
| 4 |
+
"optimizer_mode": 5,
|
| 5 |
+
"model_parameterization": "gated",
|
| 6 |
+
"adam_lr": 0.0002,
|
| 7 |
+
"muon_lr": 0.0005,
|
| 8 |
+
"base_dir": "logs_new_MUON_large_reshape_svd_gated/svd"
|
| 9 |
+
},
|
| 10 |
+
"hyperparameters": {
|
| 11 |
+
"input_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 12 |
+
"input_val_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 13 |
+
"batch_size": 960,
|
| 14 |
+
"device_batch_size": 24,
|
| 15 |
+
"sequence_length": 1024,
|
| 16 |
+
"num_iterations": 6000,
|
| 17 |
+
"learning_rate": 0.0018,
|
| 18 |
+
"warmup_iters": 0,
|
| 19 |
+
"warmdown_iters": 0,
|
| 20 |
+
"weight_decay": 0,
|
| 21 |
+
"val_loss_every": 125,
|
| 22 |
+
"val_tokens": 10420224,
|
| 23 |
+
"save_every": 0
|
| 24 |
+
},
|
| 25 |
+
"run_uuid_for_log": "c51a87f3-6af4-417a-86fa-83dd74e4e135",
|
| 26 |
+
"script_code_logged_at_start": true
|
| 27 |
+
}
|
logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_42/training_log_c51a87f3-6af4-417a-86fa-83dd74e4e135.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cli_args": {
|
| 3 |
+
"seed": 43,
|
| 4 |
+
"optimizer_mode": 5,
|
| 5 |
+
"model_parameterization": "gated",
|
| 6 |
+
"adam_lr": 0.0002,
|
| 7 |
+
"muon_lr": 0.0005,
|
| 8 |
+
"base_dir": "logs_new_MUON_large_reshape_svd_gated/svd"
|
| 9 |
+
},
|
| 10 |
+
"hyperparameters": {
|
| 11 |
+
"input_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin",
|
| 12 |
+
"input_val_bin": "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin",
|
| 13 |
+
"batch_size": 960,
|
| 14 |
+
"device_batch_size": 24,
|
| 15 |
+
"sequence_length": 1024,
|
| 16 |
+
"num_iterations": 6000,
|
| 17 |
+
"learning_rate": 0.0018,
|
| 18 |
+
"warmup_iters": 0,
|
| 19 |
+
"warmdown_iters": 0,
|
| 20 |
+
"weight_decay": 0,
|
| 21 |
+
"val_loss_every": 125,
|
| 22 |
+
"val_tokens": 10420224,
|
| 23 |
+
"save_every": 0
|
| 24 |
+
},
|
| 25 |
+
"run_uuid_for_log": "ba9ae92f-719c-4f06-8489-a3fe9a80096d",
|
| 26 |
+
"script_code_logged_at_start": true
|
| 27 |
+
}
|
logs_new_MUON_large_reshape_svd_gated/svd/mode_5_param_gated_muon_lr_0.0005_adam_lr_0.0002_seed_43/training_log_ba9ae92f-719c-4f06-8489-a3fe9a80096d.txt
ADDED
|
@@ -0,0 +1,856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
with open(sys.argv[0]) as f:
|
| 5 |
+
code = f.read() # read the code of this file ASAP, for logging
|
| 6 |
+
import uuid
|
| 7 |
+
import time
|
| 8 |
+
import copy
|
| 9 |
+
import glob
|
| 10 |
+
from dataclasses import dataclass, asdict
|
| 11 |
+
from functools import lru_cache
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import argparse # Keep argparse for --unet and potentially --optimizer_mode
|
| 14 |
+
import json
|
| 15 |
+
import random
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 19 |
+
import torch
|
| 20 |
+
torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems
|
| 21 |
+
from torch import Tensor, nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
import torch.distributed as dist
|
| 24 |
+
# use of FlexAttention contributed by @KoszarskyB
|
| 25 |
+
from torch.nn.attention.flex_attention import BlockMask, flex_attention
|
| 26 |
+
sys.path.append("/home/aiops/zhangfz/MUON_theory/modded-nanogpt") # Already present
|
| 27 |
+
from optimizers.MUON_new_large_nes import Muon
|
| 28 |
+
from utils.float_compute import mm_op, backward as mm_backward_custom, setup_context as mm_setup_context_custom # Renamed
|
| 29 |
+
import torch._inductor.config as config
|
| 30 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 31 |
+
from kn_util.utils import setup_debugpy
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# -----------------------------------------------------------------------------
|
| 35 |
+
# Seeding Function
|
| 36 |
+
def set_seed(seed):
|
| 37 |
+
random.seed(seed)
|
| 38 |
+
np.random.seed(seed)
|
| 39 |
+
torch.manual_seed(seed)
|
| 40 |
+
if torch.cuda.is_available():
|
| 41 |
+
torch.cuda.manual_seed_all(seed)
|
| 42 |
+
print(f"PRINT: Set seed to {seed}", flush=True) # Print immediately for all ranks
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# ---- ADD: spectral metrics helper ----
|
| 46 |
+
def calculate_svd_metrics(matrix: torch.Tensor, *, topk: int = 10):
|
| 47 |
+
"""
|
| 48 |
+
Returns dict with:
|
| 49 |
+
- entropy_norm: normalized SVD entropy
|
| 50 |
+
- erank: effective rank = exp(Shannon entropy of p)
|
| 51 |
+
- topk_energy: sum of top-k p_i (energy fraction in the top-k singular values)
|
| 52 |
+
- q75_q25: ratio of 75th to 25th percentile of eigenvalues (sigma^2)
|
| 53 |
+
"""
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
s = torch.linalg.svdvals(matrix.detach().to('cpu', torch.float32))
|
| 56 |
+
s = s[s > 1e-9]
|
| 57 |
+
n = s.numel()
|
| 58 |
+
if n == 0:
|
| 59 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 60 |
+
|
| 61 |
+
s2 = s * s
|
| 62 |
+
S2_sum = float(torch.sum(s2))
|
| 63 |
+
if S2_sum == 0.0:
|
| 64 |
+
return dict(entropy_norm=0.0, erank=0.0, topk_energy=0.0, q75_q25=float('inf'))
|
| 65 |
+
|
| 66 |
+
p = s2 / S2_sum # energy distribution
|
| 67 |
+
# Shannon entropy H (natural log)
|
| 68 |
+
H = float(torch.sum(torch.special.entr(p)))
|
| 69 |
+
entropy_norm = H / np.log(max(n, 2))
|
| 70 |
+
erank = float(np.exp(H))
|
| 71 |
+
|
| 72 |
+
k = min(topk, n)
|
| 73 |
+
topk_energy = float(torch.topk(p, k).values.sum())
|
| 74 |
+
|
| 75 |
+
# eigenvalues = s^2, use quantiles on s^2
|
| 76 |
+
q25 = float(torch.quantile(s2, 0.25))
|
| 77 |
+
q75 = float(torch.quantile(s2, 0.75))
|
| 78 |
+
q75_q25 = (q75 / q25) if q25 > 0 else float('inf')
|
| 79 |
+
|
| 80 |
+
return dict(
|
| 81 |
+
entropy_norm=entropy_norm,
|
| 82 |
+
erank=erank,
|
| 83 |
+
topk_energy=topk_energy,
|
| 84 |
+
q75_q25=q75_q25,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# -----------------------------------------------------------------------------
|
| 89 |
+
# Our own simple Distributed Data Loader
|
| 90 |
+
|
| 91 |
+
def _peek_data_shard(filename):
|
| 92 |
+
# only reads the header, returns header data
|
| 93 |
+
with open(filename, "rb") as f:
|
| 94 |
+
# first read the header, which is 256 int32 integers (4 bytes each)
|
| 95 |
+
header = np.frombuffer(f.read(256*4), dtype=np.int32)
|
| 96 |
+
if header[0] != 20240520:
|
| 97 |
+
print("ERROR: magic number mismatch in the data .bin file!")
|
| 98 |
+
print("---> HINT: Are you passing in a correct file with --input_bin?")
|
| 99 |
+
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
|
| 100 |
+
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
|
| 101 |
+
exit(1)
|
| 102 |
+
assert header[1] == 1, "unsupported version"
|
| 103 |
+
ntok = header[2] # number of tokens (claimed)
|
| 104 |
+
return ntok # for now just return the number of tokens
|
| 105 |
+
|
| 106 |
+
def _load_data_shard(filename):
|
| 107 |
+
with open(filename, "rb") as f:
|
| 108 |
+
# first read the header, which is 256 int32 integers (4 bytes each)
|
| 109 |
+
header = np.frombuffer(f.read(256*4), dtype=np.int32)
|
| 110 |
+
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
|
| 111 |
+
assert header[1] == 1, "unsupported version"
|
| 112 |
+
ntok = header[2] # number of tokens (claimed)
|
| 113 |
+
# the rest of it are tokens, stored as uint16
|
| 114 |
+
tokens = np.frombuffer(f.read(), dtype=np.uint16)
|
| 115 |
+
assert len(tokens) == ntok, "number of tokens read does not match header?"
|
| 116 |
+
return tokens
|
| 117 |
+
|
| 118 |
+
class DistributedDataLoader:
|
| 119 |
+
def __init__(self, filename_pattern, B, T, process_rank, num_processes):
|
| 120 |
+
self.process_rank = process_rank
|
| 121 |
+
self.num_processes = num_processes
|
| 122 |
+
self.B = B
|
| 123 |
+
self.T = T
|
| 124 |
+
|
| 125 |
+
# glob files that match the pattern
|
| 126 |
+
self.files = sorted(glob.glob(filename_pattern))
|
| 127 |
+
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
|
| 128 |
+
|
| 129 |
+
# load and validate all data shards, count number of tokens in total
|
| 130 |
+
ntok_total = 0
|
| 131 |
+
for fname in self.files:
|
| 132 |
+
shard_ntok = _peek_data_shard(fname)
|
| 133 |
+
assert shard_ntok >= num_processes * B * T + 1
|
| 134 |
+
ntok_total += int(shard_ntok)
|
| 135 |
+
self.ntok_total = ntok_total
|
| 136 |
+
|
| 137 |
+
# kick things off
|
| 138 |
+
self.reset()
|
| 139 |
+
|
| 140 |
+
def reset(self):
|
| 141 |
+
self.current_shard = 0
|
| 142 |
+
self.current_position = self.process_rank * self.B * self.T
|
| 143 |
+
self.tokens = _load_data_shard(self.files[self.current_shard])
|
| 144 |
+
|
| 145 |
+
def advance(self): # advance to next data shard
|
| 146 |
+
self.current_shard = (self.current_shard + 1) % len(self.files)
|
| 147 |
+
self.current_position = self.process_rank * self.B * self.T
|
| 148 |
+
self.tokens = _load_data_shard(self.files[self.current_shard])
|
| 149 |
+
|
| 150 |
+
def next_batch(self):
|
| 151 |
+
B = self.B
|
| 152 |
+
T = self.T
|
| 153 |
+
buf = self.tokens[self.current_position : self.current_position+B*T+1]
|
| 154 |
+
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
|
| 155 |
+
x = (buf[:-1]).view(B, T) # inputs
|
| 156 |
+
y = (buf[1:]).view(B, T) # targets
|
| 157 |
+
# advance current position and load next shard if necessary
|
| 158 |
+
self.current_position += B * T * self.num_processes
|
| 159 |
+
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
|
| 160 |
+
self.advance()
|
| 161 |
+
return x.cuda(), y.cuda()
|
| 162 |
+
|
| 163 |
+
# -----------------------------------------------------------------------------
|
| 164 |
+
# int main
|
| 165 |
+
|
| 166 |
+
@dataclass
|
| 167 |
+
class Hyperparameters:
|
| 168 |
+
# data hyperparams
|
| 169 |
+
input_bin : str = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_train_*.bin"
|
| 170 |
+
input_val_bin : str = "/home/aiops/zhangfz/MUON_theory/modded-nanogpt/data/fineweb10B/fineweb_val_*.bin"
|
| 171 |
+
# optimization hyperparams
|
| 172 |
+
batch_size : int = 8*120 # 8*120 # batch size, in sequences, across all devices
|
| 173 |
+
device_batch_size : int = 24 # batch size, in sequences, per device
|
| 174 |
+
sequence_length : int = 1024 # sequence length, in tokens
|
| 175 |
+
num_iterations : int = 6000 # number of iterations to run
|
| 176 |
+
learning_rate : float = 0.0036 / 2
|
| 177 |
+
warmup_iters : int = 0
|
| 178 |
+
warmdown_iters : int = 0 # number of iterations of linear warmup/warmdown for triangular or trapezoidal schedule
|
| 179 |
+
weight_decay : float = 0
|
| 180 |
+
# evaluation and logging hyperparams
|
| 181 |
+
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
|
| 182 |
+
val_tokens : int = 10420224 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
|
| 183 |
+
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
|
| 184 |
+
args = Hyperparameters()
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# -----------------------------------------------------------------------------
|
| 189 |
+
# int main
|
| 190 |
+
# setup_debugpy(force=True)
|
| 191 |
+
parser = argparse.ArgumentParser(description="NanoGPT Training Script with Muon")
|
| 192 |
+
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
|
| 193 |
+
# --- MODIFICATION: Add optimizer_mode as a CLI argument ---
|
| 194 |
+
parser.add_argument("--optimizer_mode", type=int, default=0,
|
| 195 |
+
help="Defines how Muon is applied. "
|
| 196 |
+
"0: Muon(All Hidden Attn+MLP - original); "
|
| 197 |
+
"1: Muon(QK Attn)/Adam(VO Attn,MLP); "
|
| 198 |
+
"2: Muon(VO Attn)/Adam(QK Attn,MLP); "
|
| 199 |
+
"3: Muon(All Attn)/Adam(MLP); "
|
| 200 |
+
"4: Muon(MLP)/Adam(All Attn)"
|
| 201 |
+
"5: All Adam (No Muon, all applicable matrices to Adam)."
|
| 202 |
+
"6: Muon(W_2 MLP)/Adam(attn, W_1 MLP)."
|
| 203 |
+
"7: Muon(VO Attn, MLP)/Adam(QK Attn)."
|
| 204 |
+
"8: Muon(VO Attn, W_2 MLP)/Adam(QK Attn, W_1 MLP)."
|
| 205 |
+
)
|
| 206 |
+
parser.add_argument("--model_parameterization", type=str, default="whole",choices=["whole","qkvo", "norope", "gated"])
|
| 207 |
+
parser.add_argument("--adam_lr", type=float, default=0.008, help="Learning rate for Adam matrices")
|
| 208 |
+
parser.add_argument("--muon_lr", type=float, default=0.05, help="Learning rate for Muon matrices")
|
| 209 |
+
parser.add_argument("--base_dir", type=str, default="logs_new_MUON_large/test", help="Base directory for logs")
|
| 210 |
+
exp_args = parser.parse_args()
|
| 211 |
+
set_seed(exp_args.seed)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# set up DDP (distributed data parallel). torchrun sets this env variable
|
| 216 |
+
assert torch.cuda.is_available()
|
| 217 |
+
dist.init_process_group(backend='nccl')
|
| 218 |
+
ddp_rank = int(os.environ['RANK'])
|
| 219 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
| 220 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
| 221 |
+
device = f'cuda:{ddp_local_rank}'
|
| 222 |
+
torch.cuda.set_device(device)
|
| 223 |
+
print(f"using device: {device}")
|
| 224 |
+
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
|
| 225 |
+
|
| 226 |
+
logfile = None
|
| 227 |
+
run_dir_path_str = None
|
| 228 |
+
base_log_dir = Path(exp_args.base_dir)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
if master_process:
|
| 232 |
+
import subprocess
|
| 233 |
+
set_seed(exp_args.seed)
|
| 234 |
+
|
| 235 |
+
# Construct folder name based on config and seed
|
| 236 |
+
# run_folder_name = f"mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_adam_lr_{exp_args.adam_lr}_seed_{exp_args.seed}"
|
| 237 |
+
run_folder_name = f"mode_{exp_args.optimizer_mode}_param_{exp_args.model_parameterization}_muon_lr_{exp_args.muon_lr}_adam_lr_{exp_args.adam_lr}_seed_{exp_args.seed}"
|
| 238 |
+
run_dir_path = base_log_dir / run_folder_name
|
| 239 |
+
run_dir_path.mkdir(parents=True, exist_ok=True)
|
| 240 |
+
run_dir_path_str = str(run_dir_path)
|
| 241 |
+
|
| 242 |
+
run_uuid = uuid.uuid4()
|
| 243 |
+
logfile = run_dir_path / f"training_log_{run_uuid}.txt"
|
| 244 |
+
print(f"Logging to: {logfile}")
|
| 245 |
+
|
| 246 |
+
# Save configuration
|
| 247 |
+
config_to_save = {
|
| 248 |
+
"cli_args": vars(exp_args),
|
| 249 |
+
"hyperparameters": {k: v for k, v in args.__class__.__dict__.items() if not k.startswith('__') and not callable(v)},
|
| 250 |
+
"run_uuid_for_log": str(run_uuid),
|
| 251 |
+
"script_code_logged_at_start": True
|
| 252 |
+
}
|
| 253 |
+
config_file_path = run_dir_path / "config.json"
|
| 254 |
+
with open(config_file_path, "w") as f:
|
| 255 |
+
json.dump(config_to_save, f, indent=4)
|
| 256 |
+
print(f"Saved configuration to: {config_file_path}")
|
| 257 |
+
|
| 258 |
+
# convenience variables
|
| 259 |
+
B, T = args.device_batch_size, args.sequence_length
|
| 260 |
+
# calculate the number of steps to take in the val loop.
|
| 261 |
+
print(f"args.val_tokens: {args.val_tokens}, args.batch_size: {args.batch_size}, B: {B}, T: {T}, ddp_world_size: {ddp_world_size}")
|
| 262 |
+
assert args.val_tokens % (B * T * ddp_world_size) == 0
|
| 263 |
+
val_steps = args.val_tokens // (B * T * ddp_world_size)
|
| 264 |
+
# calculate the steps of gradient accumulation required to attain the desired global batch size.
|
| 265 |
+
assert args.batch_size % (B * ddp_world_size) == 0
|
| 266 |
+
train_accumulation_steps = args.batch_size // (B * ddp_world_size)
|
| 267 |
+
|
| 268 |
+
# load tokens
|
| 269 |
+
train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size)
|
| 270 |
+
val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size)
|
| 271 |
+
if master_process:
|
| 272 |
+
print(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
|
| 273 |
+
print(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
|
| 274 |
+
x, y = train_loader.next_batch()
|
| 275 |
+
|
| 276 |
+
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
|
| 277 |
+
# this originates from Karpathy's experiments.
|
| 278 |
+
num_vocab = 50304
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
if exp_args.model_parameterization == "qkvo":
|
| 283 |
+
from models.nano_GPT_qkvo_large import GPT, GPTConfig
|
| 284 |
+
# model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=25, n_head=12, n_embd=1536))
|
| 285 |
+
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=36, n_head=20, n_embd=1280))
|
| 286 |
+
elif exp_args.model_parameterization == "gated":
|
| 287 |
+
from models.nano_GPT_gated_large import GPT, GPTConfig
|
| 288 |
+
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=27, n_head=20, n_embd=1280))
|
| 289 |
+
|
| 290 |
+
if master_process:
|
| 291 |
+
print(sum(p.numel() for p in model.parameters()))
|
| 292 |
+
model = model.cuda()
|
| 293 |
+
if hasattr(config, "coordinate_descent_tuning"):
|
| 294 |
+
config.coordinate_descent_tuning = True # suggested by @Chillee
|
| 295 |
+
model = torch.compile(model)
|
| 296 |
+
# here we wrap model into DDP container
|
| 297 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
| 298 |
+
raw_model = model.module # always contains the "raw" unwrapped model
|
| 299 |
+
ctx = torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16)
|
| 300 |
+
|
| 301 |
+
# for name, param in raw_model.named_parameters():
|
| 302 |
+
# print(name, param.shape)
|
| 303 |
+
|
| 304 |
+
if exp_args.model_parameterization == "qkvo" :
|
| 305 |
+
print("PRINT: Collecting parameters for optimizers...")
|
| 306 |
+
head_params = [raw_model.lm_head.weight]
|
| 307 |
+
# embed_params = [raw_model.transformer.wte.weight]
|
| 308 |
+
|
| 309 |
+
# Granular collection for attention and MLP parts
|
| 310 |
+
attn_q_params = []
|
| 311 |
+
attn_k_params = []
|
| 312 |
+
attn_v_params = []
|
| 313 |
+
attn_o_params = [] # W_O from c_proj
|
| 314 |
+
mlp_fc_params = []
|
| 315 |
+
mlp_proj_params = []
|
| 316 |
+
|
| 317 |
+
for block_module in raw_model.transformer.h:
|
| 318 |
+
if block_module.attn is not None:
|
| 319 |
+
# These attributes (c_q, c_k, c_v) MUST exist in your CausalSelfAttention class
|
| 320 |
+
if hasattr(block_module.attn, 'c_q'): attn_q_params.append(block_module.attn.c_q.weight)
|
| 321 |
+
else:
|
| 322 |
+
print(f"PRINT: Warning: c_q not found in attn module of a block.")
|
| 323 |
+
if hasattr(block_module.attn, 'c_k'): attn_k_params.append(block_module.attn.c_k.weight)
|
| 324 |
+
else: print(f"PRINT: Warning: c_k not found in attn module of a block.")
|
| 325 |
+
if hasattr(block_module.attn, 'c_v'): attn_v_params.append(block_module.attn.c_v.weight)
|
| 326 |
+
else: print(f"PRINT: Warning: c_v not found in attn module of a block.")
|
| 327 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 328 |
+
if block_module.mlp is not None:
|
| 329 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 330 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 331 |
+
|
| 332 |
+
# Combine into logical groups for experiments
|
| 333 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 334 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 335 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 336 |
+
mlp_w1_group = mlp_fc_params
|
| 337 |
+
mlp_w2_group = mlp_proj_params
|
| 338 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params
|
| 339 |
+
|
| 340 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 341 |
+
# matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 342 |
+
matrix_params_for_scalar_check = set(head_params + all_attn_matrices + all_mlp_matrices)
|
| 343 |
+
scalar_params = [p for n, p in raw_model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 344 |
+
for p_scalar in scalar_params: # Sanity check
|
| 345 |
+
if p_scalar.ndim >=2:
|
| 346 |
+
print(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.")
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
# Determine parameter distribution based on optimizer_mode
|
| 350 |
+
muon_params_target_list = []
|
| 351 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 352 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 353 |
+
|
| 354 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 355 |
+
|
| 356 |
+
print(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}")
|
| 357 |
+
|
| 358 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 359 |
+
print(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.")
|
| 360 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 361 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 362 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 363 |
+
print(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 364 |
+
muon_params_target_list = attn_qk_group
|
| 365 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 366 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 367 |
+
print(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 368 |
+
muon_params_target_list = attn_vo_group
|
| 369 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 370 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 371 |
+
print(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).")
|
| 372 |
+
muon_params_target_list = all_attn_matrices
|
| 373 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 374 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 375 |
+
print(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).")
|
| 376 |
+
muon_params_target_list = all_mlp_matrices
|
| 377 |
+
adam_matrix_target_list = all_attn_matrices
|
| 378 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 379 |
+
print(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).")
|
| 380 |
+
muon_params_target_list = []
|
| 381 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 382 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 383 |
+
print(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 384 |
+
muon_params_target_list = mlp_w2_group
|
| 385 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 386 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 387 |
+
print(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 388 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 389 |
+
adam_matrix_target_list = attn_qk_group
|
| 390 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 391 |
+
print(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 392 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 393 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 394 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 395 |
+
print(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 396 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 397 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 398 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 399 |
+
print(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 400 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 401 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 402 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 403 |
+
print(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 404 |
+
muon_params_target_list = mlp_w1_group
|
| 405 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 406 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 407 |
+
print(f"PRINT: Mode 12: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 408 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 409 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 410 |
+
elif current_optimizer_mode == 13:
|
| 411 |
+
print(f"PRINT: Mode 13: Muon on W_2, W_O. Adam on V Attn, QK Attn, W_1 (Adam LR: {adam_matrix_lr}).")
|
| 412 |
+
muon_params_target_list = attn_o_params + mlp_w2_group
|
| 413 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params + mlp_w1_group
|
| 414 |
+
elif current_optimizer_mode == 14:
|
| 415 |
+
print(f"PRINT: Mode 14: Muon on W_O. Adam on V Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 416 |
+
muon_params_target_list = attn_o_params
|
| 417 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params +all_mlp_matrices
|
| 418 |
+
elif current_optimizer_mode == 15:
|
| 419 |
+
print(f"PRINT: Mode 15: Muon on W_V. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 420 |
+
muon_params_target_list = attn_v_params
|
| 421 |
+
adam_matrix_target_list = attn_qk_group + attn_o_params +all_mlp_matrices
|
| 422 |
+
elif current_optimizer_mode == 16:
|
| 423 |
+
print(f"PRINT: Mode 15: Muon on QKV. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 424 |
+
muon_params_target_list = attn_v_params + attn_qk_group
|
| 425 |
+
adam_matrix_target_list = attn_o_params +all_mlp_matrices
|
| 426 |
+
else:
|
| 427 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 428 |
+
|
| 429 |
+
# Adam optimizer setup
|
| 430 |
+
adam_param_groups_config = [
|
| 431 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 432 |
+
# dict(params=embed_params, lr=adam_matrix_lr),
|
| 433 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 434 |
+
]
|
| 435 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 436 |
+
if adam_matrix_target_list:
|
| 437 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 438 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 439 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 440 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 441 |
+
|
| 442 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 443 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 444 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.9, 0.95), eps=1e-10, fused=True)
|
| 445 |
+
optimizers = [optimizer1] # Start with Adam
|
| 446 |
+
|
| 447 |
+
# Muon optimizer setup
|
| 448 |
+
# if muon_params_target_list:
|
| 449 |
+
# # Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 450 |
+
# flat_unique_muon_params = []
|
| 451 |
+
# seen_muon_ids = set()
|
| 452 |
+
# for sublist_or_p in muon_params_target_list:
|
| 453 |
+
# for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 454 |
+
# if p is not None and id(p) not in seen_muon_ids:
|
| 455 |
+
# flat_unique_muon_params.append(p)
|
| 456 |
+
# seen_muon_ids.add(id(p))
|
| 457 |
+
|
| 458 |
+
# muon_param_groups_config = []
|
| 459 |
+
# if flat_unique_muon_params:
|
| 460 |
+
# muon_param_groups_config.append(dict(params=flat_unique_muon_params, lr=exp_args.muon_lr))
|
| 461 |
+
|
| 462 |
+
# if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 463 |
+
# optimizer2 = Muon(muon_param_groups_config, lr=exp_args.muon_lr, momentum=0.95,rank=ddp_rank, world_size=ddp_world_size) # Pass nesterov, ns_steps
|
| 464 |
+
# optimizers.append(optimizer2)
|
| 465 |
+
# else:
|
| 466 |
+
# print("PRINT: Muon optimizer not created as its target parameter list was empty.")
|
| 467 |
+
# optimizer2 = None # Explicitly set to None if not created
|
| 468 |
+
# else:
|
| 469 |
+
# print("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).")
|
| 470 |
+
# optimizer2 = None # Explicitly set to None
|
| 471 |
+
# Muon optimizer setup
|
| 472 |
+
if muon_params_target_list:
|
| 473 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 474 |
+
flat_unique_muon_params = []
|
| 475 |
+
seen_muon_ids = set()
|
| 476 |
+
for sublist_or_p in muon_params_target_list:
|
| 477 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 478 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 479 |
+
flat_unique_muon_params.append(p)
|
| 480 |
+
seen_muon_ids.add(id(p))
|
| 481 |
+
|
| 482 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 483 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95,rank=ddp_rank, world_size=ddp_world_size) # Pass nesterov, ns_steps
|
| 484 |
+
optimizers.append(optimizer2)
|
| 485 |
+
else:
|
| 486 |
+
print("PRINT: Muon optimizer not created as its target parameter list was empty.")
|
| 487 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 488 |
+
else:
|
| 489 |
+
print("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).")
|
| 490 |
+
optimizer2 = None # Explicitly set to None
|
| 491 |
+
|
| 492 |
+
print(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}")
|
| 493 |
+
if optimizer2:
|
| 494 |
+
print(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.")
|
| 495 |
+
|
| 496 |
+
# Set up parameter groups for SVD analysis
|
| 497 |
+
matrix_groups_for_svd = {}
|
| 498 |
+
if master_process:
|
| 499 |
+
matrix_groups_for_svd = {
|
| 500 |
+
"attn_qk": attn_qk_group,
|
| 501 |
+
"attn_vo": attn_vo_group,
|
| 502 |
+
"mlp_w1": mlp_w1_group,
|
| 503 |
+
"mlp_w2": mlp_w2_group
|
| 504 |
+
}
|
| 505 |
+
|
| 506 |
+
elif exp_args.model_parameterization == "gated":
|
| 507 |
+
print("PRINT: Collecting parameters for optimizers...")
|
| 508 |
+
head_params = [raw_model.lm_head.weight]
|
| 509 |
+
# embed_params = [raw_model.transformer.wte.weight]
|
| 510 |
+
|
| 511 |
+
# Granular collection for attention and MLP parts
|
| 512 |
+
attn_q_params = []
|
| 513 |
+
attn_k_params = []
|
| 514 |
+
attn_v_params = []
|
| 515 |
+
attn_o_params = [] # W_O from c_proj
|
| 516 |
+
mlp_fc_params = []
|
| 517 |
+
mlp_proj_params = []
|
| 518 |
+
mlp_up_params = []
|
| 519 |
+
|
| 520 |
+
for block_module in raw_model.transformer.h:
|
| 521 |
+
if block_module.attn is not None:
|
| 522 |
+
# These attributes (c_q, c_k, c_v) MUST exist in your CausalSelfAttention class
|
| 523 |
+
if hasattr(block_module.attn, 'c_q'): attn_q_params.append(block_module.attn.c_q.weight)
|
| 524 |
+
else:
|
| 525 |
+
print(f"PRINT: Warning: c_q not found in attn module of a block.")
|
| 526 |
+
if hasattr(block_module.attn, 'c_k'): attn_k_params.append(block_module.attn.c_k.weight)
|
| 527 |
+
else: print(f"PRINT: Warning: c_k not found in attn module of a block.")
|
| 528 |
+
if hasattr(block_module.attn, 'c_v'): attn_v_params.append(block_module.attn.c_v.weight)
|
| 529 |
+
else: print(f"PRINT: Warning: c_v not found in attn module of a block.")
|
| 530 |
+
attn_o_params.append(block_module.attn.c_proj.weight)
|
| 531 |
+
if block_module.mlp is not None:
|
| 532 |
+
mlp_fc_params.append(block_module.mlp.c_fc.weight)
|
| 533 |
+
mlp_proj_params.append(block_module.mlp.c_proj.weight)
|
| 534 |
+
mlp_up_params.append(block_module.mlp.c_up.weight)
|
| 535 |
+
|
| 536 |
+
# Combine into logical groups for experiments
|
| 537 |
+
attn_qk_group = attn_q_params + attn_k_params
|
| 538 |
+
attn_vo_group = attn_v_params + attn_o_params
|
| 539 |
+
all_attn_matrices = attn_qk_group + attn_vo_group
|
| 540 |
+
mlp_w1_group = mlp_fc_params
|
| 541 |
+
mlp_w2_group = mlp_proj_params
|
| 542 |
+
mlp_up_group = mlp_up_params
|
| 543 |
+
all_mlp_matrices = mlp_fc_params + mlp_proj_params+ mlp_up_params
|
| 544 |
+
|
| 545 |
+
# Scalar parameters (all others not explicitly grouped as matrices)
|
| 546 |
+
# matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices)
|
| 547 |
+
matrix_params_for_scalar_check = set(head_params + all_attn_matrices + all_mlp_matrices)
|
| 548 |
+
scalar_params = [p for n, p in raw_model.named_parameters() if p not in matrix_params_for_scalar_check]
|
| 549 |
+
for p_scalar in scalar_params: # Sanity check
|
| 550 |
+
if p_scalar.ndim >=2:
|
| 551 |
+
print(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.")
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
# Determine parameter distribution based on optimizer_mode
|
| 555 |
+
muon_params_target_list = []
|
| 556 |
+
adam_matrix_target_list = [] # Matrices that Adam will handle specifically
|
| 557 |
+
adam_matrix_lr = exp_args.adam_lr # LR for matrices if Adam handles them (can be tuned)
|
| 558 |
+
|
| 559 |
+
current_optimizer_mode = exp_args.optimizer_mode
|
| 560 |
+
|
| 561 |
+
print(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}")
|
| 562 |
+
|
| 563 |
+
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params"
|
| 564 |
+
print(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.")
|
| 565 |
+
muon_params_target_list = all_attn_matrices + all_mlp_matrices
|
| 566 |
+
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here.
|
| 567 |
+
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP
|
| 568 |
+
print(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 569 |
+
muon_params_target_list = attn_qk_group
|
| 570 |
+
adam_matrix_target_list = attn_vo_group + all_mlp_matrices
|
| 571 |
+
elif current_optimizer_mode == 2: # Muon on VO, Adam on QK and MLP
|
| 572 |
+
print(f"PRINT: Mode 2: Muon on VO Attn. Adam on QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 573 |
+
muon_params_target_list = attn_vo_group
|
| 574 |
+
adam_matrix_target_list = attn_qk_group + all_mlp_matrices
|
| 575 |
+
elif current_optimizer_mode == 3: # Muon on All Attn (QKVO), Adam on MLP
|
| 576 |
+
print(f"PRINT: Mode 3: Muon on ALL Attn (QKVO). Adam on MLP (Adam LR: {adam_matrix_lr}).")
|
| 577 |
+
muon_params_target_list = all_attn_matrices
|
| 578 |
+
adam_matrix_target_list = all_mlp_matrices
|
| 579 |
+
elif current_optimizer_mode == 4: # Muon on MLP, Adam on All Attn (QKVO)
|
| 580 |
+
print(f"PRINT: Mode 4: Muon on MLP. Adam on ALL Attn (QKVO) (Adam LR: {adam_matrix_lr}).")
|
| 581 |
+
muon_params_target_list = all_mlp_matrices
|
| 582 |
+
adam_matrix_target_list = all_attn_matrices
|
| 583 |
+
elif current_optimizer_mode == 5: # NEW MODE 5 - All Adam
|
| 584 |
+
print(f"PRINT: Mode 5: All Adam. All Attn and MLP matrices to Adam (Adam LR: {adam_matrix_lr}).")
|
| 585 |
+
muon_params_target_list = []
|
| 586 |
+
adam_matrix_target_list = all_attn_matrices + all_mlp_matrices # All matrices to Adam
|
| 587 |
+
elif current_optimizer_mode == 6: # Muon on W_2 MLP, Adam on attn, W_1 MLP
|
| 588 |
+
print(f"PRINT: Mode 6: Muon on W_2 MLP. Adam on attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 589 |
+
muon_params_target_list = mlp_w2_group
|
| 590 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w1_group
|
| 591 |
+
elif current_optimizer_mode == 7: # Muon on VO Attn, MLP, Adam on QK Attn
|
| 592 |
+
print(f"PRINT: Mode 7: Muon on VO Attn, MLP. Adam on QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 593 |
+
muon_params_target_list = attn_vo_group + all_mlp_matrices
|
| 594 |
+
adam_matrix_target_list = attn_qk_group
|
| 595 |
+
elif current_optimizer_mode == 8: # Muon on VO Attn, W_2 MLP, Adam on QK Attn, W_1 MLP
|
| 596 |
+
print(f"PRINT: Mode 8: Muon on VO Attn, W_2 MLP. Adam on QK Attn, W_1 MLP (Adam LR: {adam_matrix_lr}).")
|
| 597 |
+
muon_params_target_list = attn_vo_group + mlp_w2_group
|
| 598 |
+
adam_matrix_target_list = attn_qk_group + mlp_w1_group
|
| 599 |
+
elif current_optimizer_mode == 9: # Muon on V Attn, MLP
|
| 600 |
+
print(f"PRINT: Mode 9: Muon on V Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 601 |
+
muon_params_target_list = attn_v_params + all_mlp_matrices
|
| 602 |
+
adam_matrix_target_list = attn_o_params + attn_qk_group
|
| 603 |
+
elif current_optimizer_mode == 10: # Muon on O Attn, MLP
|
| 604 |
+
print(f"PRINT: Mode 10: Muon on O Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 605 |
+
muon_params_target_list = attn_o_params + all_mlp_matrices
|
| 606 |
+
adam_matrix_target_list = attn_v_params + attn_qk_group
|
| 607 |
+
elif current_optimizer_mode == 11: # Muon on W_1, Adam on O Attn, QK Attn
|
| 608 |
+
print(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 609 |
+
muon_params_target_list = mlp_w1_group
|
| 610 |
+
adam_matrix_target_list = all_attn_matrices + mlp_w2_group
|
| 611 |
+
elif current_optimizer_mode == 12: # Muon on W_1, VO, Adam on others
|
| 612 |
+
print(f"PRINT: Mode 11: Muon on W_1. Adam on O Attn, QK Attn (Adam LR: {adam_matrix_lr}).")
|
| 613 |
+
muon_params_target_list = attn_vo_group + mlp_w1_group
|
| 614 |
+
adam_matrix_target_list = attn_qk_group + mlp_w2_group
|
| 615 |
+
elif current_optimizer_mode == 13:
|
| 616 |
+
print(f"PRINT: Mode 13: Muon on W_2, W_O. Adam on V Attn, QK Attn, W_1 (Adam LR: {adam_matrix_lr}).")
|
| 617 |
+
muon_params_target_list = attn_o_params + mlp_w2_group
|
| 618 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params + mlp_w1_group
|
| 619 |
+
elif current_optimizer_mode == 14:
|
| 620 |
+
print(f"PRINT: Mode 14: Muon on W_O. Adam on V Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 621 |
+
muon_params_target_list = attn_o_params
|
| 622 |
+
adam_matrix_target_list = attn_qk_group + attn_v_params +all_mlp_matrices
|
| 623 |
+
elif current_optimizer_mode == 15:
|
| 624 |
+
print(f"PRINT: Mode 15: Muon on W_V. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 625 |
+
muon_params_target_list = attn_v_params
|
| 626 |
+
adam_matrix_target_list = attn_qk_group + attn_o_params +all_mlp_matrices
|
| 627 |
+
elif current_optimizer_mode == 16:
|
| 628 |
+
print(f"PRINT: Mode 15: Muon on QKV. Adam on O Attn, QK Attn, MLP (Adam LR: {adam_matrix_lr}).")
|
| 629 |
+
muon_params_target_list = attn_v_params + attn_qk_group
|
| 630 |
+
adam_matrix_target_list = attn_o_params +all_mlp_matrices
|
| 631 |
+
else:
|
| 632 |
+
raise ValueError(f"Unsupported EXPERIMENT_MODE: {current_optimizer_mode}")
|
| 633 |
+
|
| 634 |
+
# Adam optimizer setup
|
| 635 |
+
adam_param_groups_config = [
|
| 636 |
+
dict(params=head_params, lr=adam_matrix_lr),
|
| 637 |
+
# dict(params=embed_params, lr=adam_matrix_lr),
|
| 638 |
+
dict(params=scalar_params, lr=adam_matrix_lr) # Scalar params always go to Adam
|
| 639 |
+
]
|
| 640 |
+
|
| 641 |
+
# Add matrices specifically assigned to Adam for this experiment mode
|
| 642 |
+
if adam_matrix_target_list:
|
| 643 |
+
# Ensure adam_matrix_target_list is flat and contains Parameters
|
| 644 |
+
flat_adam_matrices = [p for sublist_or_p in adam_matrix_target_list for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]) if p is not None]
|
| 645 |
+
if flat_adam_matrices: # Only add group if there are params
|
| 646 |
+
adam_param_groups_config.append(dict(params=flat_adam_matrices, lr=adam_matrix_lr))
|
| 647 |
+
|
| 648 |
+
# Filter out any Adam groups that might be empty (e.g., if scalar_params was empty)
|
| 649 |
+
adam_param_groups_config = [g for g in adam_param_groups_config if g['params']]
|
| 650 |
+
# print(f"PRINT: The length of Adam param groups config: {len(adam_param_groups_config)}")
|
| 651 |
+
optimizer1 = torch.optim.Adam(adam_param_groups_config, betas=(0.9, 0.95), eps=1e-10, fused=True)
|
| 652 |
+
optimizers = [optimizer1] # Start with Adam
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
if muon_params_target_list:
|
| 656 |
+
# Ensure muon_params_target_list is flat, unique, and contains Parameters
|
| 657 |
+
flat_unique_muon_params = []
|
| 658 |
+
seen_muon_ids = set()
|
| 659 |
+
for sublist_or_p in muon_params_target_list:
|
| 660 |
+
for p in (sublist_or_p if isinstance(sublist_or_p, list) else [sublist_or_p]):
|
| 661 |
+
if p is not None and id(p) not in seen_muon_ids:
|
| 662 |
+
flat_unique_muon_params.append(p)
|
| 663 |
+
seen_muon_ids.add(id(p))
|
| 664 |
+
|
| 665 |
+
if flat_unique_muon_params: # Only create Muon if it has parameters
|
| 666 |
+
optimizer2 = Muon(flat_unique_muon_params, lr=exp_args.muon_lr, momentum=0.95,rank=ddp_rank, world_size=ddp_world_size) # Pass nesterov, ns_steps
|
| 667 |
+
optimizers.append(optimizer2)
|
| 668 |
+
else:
|
| 669 |
+
print("PRINT: Muon optimizer not created as its target parameter list was empty.")
|
| 670 |
+
optimizer2 = None # Explicitly set to None if not created
|
| 671 |
+
else:
|
| 672 |
+
print("PRINT: Muon optimizer not created as muon_params_target_list was empty (e.g. mode where Adam handles all matrices).")
|
| 673 |
+
optimizer2 = None # Explicitly set to None
|
| 674 |
+
|
| 675 |
+
print(f"PRINT: Optimizers configured. Total optimizers: {len(optimizers)}")
|
| 676 |
+
if optimizer2:
|
| 677 |
+
print(f"PRINT: Muon optimizer is active with {len(flat_unique_muon_params)} parameters.")
|
| 678 |
+
|
| 679 |
+
# Set up parameter groups for SVD analysis
|
| 680 |
+
matrix_groups_for_svd = {
|
| 681 |
+
"attn_qk": attn_qk_group,
|
| 682 |
+
"attn_vo": attn_vo_group,
|
| 683 |
+
"mlp_w1": mlp_w1_group, # c_fc only
|
| 684 |
+
"mlp_up": mlp_up_group, # c_up only
|
| 685 |
+
"mlp_w2": mlp_proj_params
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
+
# optimizer1 = torch.optim.AdamW(raw_model.lm_head.parameters(), lr=args.learning_rate, betas=(0.9, 0.95),
|
| 689 |
+
# weight_decay=args.weight_decay, fused=True)
|
| 690 |
+
# optimizer2 = Muon(raw_model.transformer.h.parameters(), lr=0.1*args.learning_rate, momentum=0.95,
|
| 691 |
+
# rank=ddp_rank, world_size=ddp_world_size)
|
| 692 |
+
|
| 693 |
+
# optimizers = [optimizer1, optimizer2]
|
| 694 |
+
# learning rate decay scheduler (linear warmup and warmdown)
|
| 695 |
+
def get_lr(it):
|
| 696 |
+
assert it <= args.num_iterations
|
| 697 |
+
# 1) linear warmup for warmup_iters steps
|
| 698 |
+
if it < args.warmup_iters:
|
| 699 |
+
return (it+1) / args.warmup_iters
|
| 700 |
+
# 2) constant lr for a while
|
| 701 |
+
elif it < args.num_iterations - args.warmdown_iters:
|
| 702 |
+
return 1.0
|
| 703 |
+
# 3) linear warmdown
|
| 704 |
+
else:
|
| 705 |
+
decay_ratio = (args.num_iterations - it) / args.warmdown_iters
|
| 706 |
+
return decay_ratio
|
| 707 |
+
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
|
| 708 |
+
|
| 709 |
+
if master_process:
|
| 710 |
+
with open(logfile, "a") as f:
|
| 711 |
+
f.write(code)
|
| 712 |
+
|
| 713 |
+
training_time_ms = 0
|
| 714 |
+
# start the clock
|
| 715 |
+
torch.cuda.synchronize()
|
| 716 |
+
t0 = time.time()
|
| 717 |
+
# begin training
|
| 718 |
+
train_loader.reset()
|
| 719 |
+
for step in range(args.num_iterations + 1):
|
| 720 |
+
last_step = (step == args.num_iterations)
|
| 721 |
+
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
|
| 722 |
+
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
|
| 723 |
+
# steps with dummy data first, and then re-initialize the model and reset the loader.
|
| 724 |
+
if step == 10:
|
| 725 |
+
training_time_ms = 0
|
| 726 |
+
t0 = time.time()
|
| 727 |
+
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
|
| 728 |
+
|
| 729 |
+
# once in a while evaluate the validation dataset
|
| 730 |
+
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
|
| 731 |
+
# stop the clock
|
| 732 |
+
torch.cuda.synchronize()
|
| 733 |
+
training_time_ms += 1000 * (time.time() - t0)
|
| 734 |
+
# run validation batches
|
| 735 |
+
with torch.no_grad():
|
| 736 |
+
val_loader.reset()
|
| 737 |
+
val_loss = 0.0
|
| 738 |
+
for _ in range(val_steps):
|
| 739 |
+
x_val, y_val = val_loader.next_batch()
|
| 740 |
+
with ctx: # of course, we'd like to use no_grad() here too, but that creates a torch.compile error for some reason
|
| 741 |
+
_, loss = model(x_val, y_val, return_logits=False)
|
| 742 |
+
val_loss += loss.detach()
|
| 743 |
+
del loss
|
| 744 |
+
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
|
| 745 |
+
val_loss /= val_steps
|
| 746 |
+
|
| 747 |
+
# SVD metrics calculation
|
| 748 |
+
svd_log_str = ""
|
| 749 |
+
if master_process and 'matrix_groups_for_svd' in locals() and matrix_groups_for_svd:
|
| 750 |
+
TOPK = 10
|
| 751 |
+
svd_results_by_category = {}
|
| 752 |
+
|
| 753 |
+
with torch.no_grad():
|
| 754 |
+
# per-category metrics (average over matrices in the group)
|
| 755 |
+
for name, group_params in matrix_groups_for_svd.items():
|
| 756 |
+
if not group_params:
|
| 757 |
+
continue
|
| 758 |
+
mets = [calculate_svd_metrics(p, topk=TOPK) for p in group_params]
|
| 759 |
+
if mets:
|
| 760 |
+
avg_entropy = float(np.mean([m['entropy_norm'] for m in mets]))
|
| 761 |
+
avg_erank = float(np.mean([m['erank'] for m in mets]))
|
| 762 |
+
avg_topkE = float(np.mean([m['topk_energy'] for m in mets]))
|
| 763 |
+
avg_qratio = float(np.mean([m['q75_q25'] for m in mets]))
|
| 764 |
+
svd_results_by_category[name] = dict(
|
| 765 |
+
entropy=avg_entropy, erank=avg_erank, topkE=avg_topkE, q75_q25=avg_qratio
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
# VO product as another category
|
| 769 |
+
if attn_v_params and attn_o_params:
|
| 770 |
+
vo_mets = []
|
| 771 |
+
num_layers = len(attn_v_params)
|
| 772 |
+
for i in range(num_layers):
|
| 773 |
+
w_v = attn_v_params[i]
|
| 774 |
+
w_o = attn_o_params[i]
|
| 775 |
+
w_ov_product = torch.matmul(w_o, w_v)
|
| 776 |
+
vo_mets.append(calculate_svd_metrics(w_ov_product, topk=TOPK))
|
| 777 |
+
if vo_mets:
|
| 778 |
+
svd_results_by_category['vo_prod'] = dict(
|
| 779 |
+
entropy=float(np.mean([m['entropy_norm'] for m in vo_mets])),
|
| 780 |
+
erank=float(np.mean([m['erank'] for m in vo_mets])),
|
| 781 |
+
topkE=float(np.mean([m['topk_energy'] for m in vo_mets])),
|
| 782 |
+
q75_q25=float(np.mean([m['q75_q25'] for m in vo_mets])),
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
# format logging string (append metrics after entropy)
|
| 786 |
+
svd_log_parts = []
|
| 787 |
+
for name, vals in svd_results_by_category.items():
|
| 788 |
+
svd_log_parts.append(
|
| 789 |
+
f"{name}:H={vals['entropy']:.4f},top{TOPK}E={vals['topkE']:.2f},eRank={vals['erank']:.1f},q75/q25={vals['q75_q25']:.2f}"
|
| 790 |
+
)
|
| 791 |
+
svd_log_str = " ".join(svd_log_parts)
|
| 792 |
+
|
| 793 |
+
# log val loss to console and to logfile
|
| 794 |
+
if master_process:
|
| 795 |
+
print(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} svd_entropy: {svd_log_str} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
|
| 796 |
+
with open(logfile, "a") as f:
|
| 797 |
+
f.write(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} svd_entropy: {svd_log_str} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms\n')
|
| 798 |
+
# start the clock again
|
| 799 |
+
torch.cuda.synchronize()
|
| 800 |
+
t0 = time.time()
|
| 801 |
+
|
| 802 |
+
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
|
| 803 |
+
# stop the clock
|
| 804 |
+
torch.cuda.synchronize()
|
| 805 |
+
training_time_ms += 1000 * (time.time() - t0)
|
| 806 |
+
# save the state of the training process
|
| 807 |
+
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
|
| 808 |
+
if run_dir_path_str:
|
| 809 |
+
save_path = f'{run_dir_path_str}/state_step{step:06d}.pt'
|
| 810 |
+
torch.save(log, save_path)
|
| 811 |
+
# start the clock again
|
| 812 |
+
torch.cuda.synchronize()
|
| 813 |
+
t0 = time.time()
|
| 814 |
+
|
| 815 |
+
# bit confusing: we want to make sure to eval on 0th iteration
|
| 816 |
+
# but also after the very last iteration. so we loop for step <= num_iterations
|
| 817 |
+
# instead of just < num_iterations (one extra due to <=), only to do
|
| 818 |
+
# the validation/sampling one last time, and then we break right here as we're done.
|
| 819 |
+
if last_step:
|
| 820 |
+
break
|
| 821 |
+
|
| 822 |
+
# --------------- TRAINING SECTION BEGIN -----------------
|
| 823 |
+
model.train()
|
| 824 |
+
for i in range(1, train_accumulation_steps+1):
|
| 825 |
+
# forward pass
|
| 826 |
+
with ctx:
|
| 827 |
+
_, loss = model(x, y, return_logits=False)
|
| 828 |
+
train_loss = loss.detach()
|
| 829 |
+
# advance the dataset for the next batch
|
| 830 |
+
x, y = train_loader.next_batch()
|
| 831 |
+
# backward pass
|
| 832 |
+
if i < train_accumulation_steps:
|
| 833 |
+
with model.no_sync(): # there's no need to sync gradients every accumulation step
|
| 834 |
+
loss.backward()
|
| 835 |
+
else:
|
| 836 |
+
loss.backward() # just sync on the last step
|
| 837 |
+
for p in model.parameters():
|
| 838 |
+
p.grad /= train_accumulation_steps
|
| 839 |
+
# step the optimizers and schedulers
|
| 840 |
+
for opt, sched in zip(optimizers, schedulers):
|
| 841 |
+
opt.step()
|
| 842 |
+
sched.step()
|
| 843 |
+
# null the gradients
|
| 844 |
+
model.zero_grad(set_to_none=True)
|
| 845 |
+
# --------------- TRAINING SECTION END -------------------
|
| 846 |
+
# everything that follows now is just diagnostics, prints, logging, etc.
|
| 847 |
+
|
| 848 |
+
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
|
| 849 |
+
if master_process:
|
| 850 |
+
approx_time = training_time_ms + 1000 * (time.time() - t0)
|
| 851 |
+
print(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
|
| 852 |
+
with open(logfile, "a") as f:
|
| 853 |
+
f.write(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms\n")
|
| 854 |
+
|
| 855 |
+
if master_process:
|
| 856 |
+
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
|