Falah commited on
Commit
f93a671
·
1 Parent(s): fb1a997
Files changed (1) hide show
  1. README.md +100 -2
README.md CHANGED
@@ -15,7 +15,105 @@ dataset_info:
15
  num_examples: 1107
16
  download_size: 0
17
  dataset_size: 25165898.049
 
 
 
 
 
 
 
 
18
  ---
19
- # Dataset Card for "wheel-chair-images-annotation4object-detec"
20
 
21
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  num_examples: 1107
16
  download_size: 0
17
  dataset_size: 25165898.049
18
+ license: apache-2.0
19
+ task_categories:
20
+ - object-detection
21
+ language:
22
+ - en
23
+ pretty_name: wheel_chair_detection
24
+ size_categories:
25
+ - 1K<n<10K
26
  ---
27
+ # Wheelchair Dataset for Object Detection
28
 
29
+ ## Dataset Information
30
+
31
+ The `dataset_info` file provides information about the wheelchair dataset designed for object detection. Here are the details:
32
+
33
+ ### Features
34
+
35
+ - **image**: Represents the images in the dataset.
36
+ - Data type: `image`
37
+
38
+ - **instances**: Represents the instances within each image. Each instance consists of a bounding box and a label.
39
+ - Data type: `list`
40
+ - Sub-features:
41
+ - **box**: Bounding box coordinates for each instance.
42
+ - Data type: `float64`
43
+ - **label**: Label for each instance.
44
+ - Data type: `int64`
45
+
46
+ ### Splits
47
+
48
+ - **Train**: This split, named "train," contains a total of 1,107 examples.
49
+ - Number of bytes: 25,165,898.049
50
+ - Number of examples: 1,107
51
+
52
+ ### Dataset Size
53
+
54
+ - Download size: 0 (no download required)
55
+ - Dataset size: 25,165,898.049 bytes
56
+
57
+ ## Wheelchair Class Name
58
+
59
+ The dataset includes the following class names for object detection:
60
+
61
+ ```json
62
+ "labels": ClassLabel(names=["person", "wheel_chair", "not wheel chair"])
63
+ ```
64
+
65
+ The class labels are defined as follows:
66
+ - "person"
67
+ - "wheel_chair"
68
+ - "not wheel chair"
69
+
70
+ ## Object Detection Application (YOLOv Models)
71
+
72
+ You can utilize the dataset with YOLOv models for object detection tasks. The class labels for the models correspond to the defined class names mentioned above:
73
+
74
+ ```json
75
+ "labels": ClassLabel(names=["person", "wheel_chair", "not wheel chair"])
76
+ ```
77
+
78
+ Make sure to follow the appropriate implementation guidelines and examples for YOLOv models to leverage this dataset effectively.
79
+
80
+ ## loading the Dataset
81
+ '''
82
+ # Load the dataset
83
+ hf_dataset = load_dataset("Falah/wheel-chair-images-annotation4object-detec", split="train")
84
+
85
+ # Accessing image
86
+ image = hf_dataset[1]['image']
87
+
88
+ # Display the image
89
+ image.show()
90
+
91
+ # Accessing label and bounding box coordinates
92
+ instances = hf_dataset[1]['instances']
93
+ for instance in instances:
94
+ label = instance['label']
95
+ box = instance['box']
96
+
97
+ # Get the class name for the label
98
+ class_name = hf_dataset.features['instances']['label'].int2str(label)
99
+ print(f"Label: {class_name}")
100
+ print(f"Bounding Box: {box}")
101
+
102
+ '''
103
+
104
+ ## Dataset Citation
105
+
106
+ If you use this wheelchair dataset for object detection in your work, please cite it using the following template:
107
+
108
+ ```
109
+ @dataset{falah_salieh_wheelchair_dataset_2023,
110
+ author = {Falah G. Salieh},
111
+ title = {Wheelchair Dataset for Object Detection},
112
+ year = {2023},
113
+ publisher = {Huggingface.co},
114
+ url = {\url{https://huggingface.co/datasets/Falah/wheel-chair-images-annotation4object-detec}},
115
+ }
116
+ ```
117
+
118
+
119
+ ---