FabianWillner commited on
Commit
f958b34
1 Parent(s): 4ee625a

Delete triviaQARC.py

Browse files
Files changed (1) hide show
  1. triviaQARC.py +0 -109
triviaQARC.py DELETED
@@ -1,109 +0,0 @@
1
- from collections import Counter
2
- import datasets
3
-
4
- class triviaQARC(datasets.Metric):
5
- def _info(self):
6
- return datasets.MetricInfo(
7
- description= "Idk",
8
- citation= "idk",
9
- features=datasets.Features(
10
- {
11
- "predictions": {"id": datasets.Value("string"), "prediction_text": datasets.Value("string")},
12
- "references": {
13
- "id": datasets.Value("string"),
14
- "answers": datasets.features.Sequence(
15
- {
16
- "text": datasets.Value("string"),
17
- "answer_start": datasets.Value("int32"),
18
- }
19
- ),
20
- },
21
- }
22
- ),
23
- )
24
-
25
- def _compute(self, predictions, references):
26
- pred_dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
27
- dataset = [
28
- {
29
- "paragraphs": [
30
- {
31
- "qas": [
32
- {
33
- "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
34
- "id": ref["id"],
35
- }
36
- for ref in references
37
- ]
38
- }
39
- ]
40
- }
41
- ]
42
- score = evaluate(dataset=dataset, predictions=pred_dict)
43
- return score
44
-
45
- def evaluate(dataset, predictions):
46
- f1 = exact_match = total = recall = precision= 0
47
- for article in dataset:
48
- for paragraph in article["paragraphs"]:
49
- for qa in paragraph["qas"]:
50
- total += 1
51
- if qa["id"] not in predictions:
52
- message = "Unanswered question " + qa["id"] + " will receive score 0."
53
- print(message, file=sys.stderr)
54
- continue
55
- ground_truths = list(map(lambda x: x["text"], qa["answers"]))
56
- prediction = predictions[qa["id"]]
57
- exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
58
- temp_f1, temp_precision, temp_recall = metric_max_over_ground_truths(f1_score, prediction, ground_truths)
59
- f1 += temp_f1
60
- precision += temp_precision
61
- recall += temp_recall
62
-
63
- exact_match = 100.0 * exact_match / total
64
- f1 = 100.0 * f1 / total
65
-
66
- return {"exact_match": exact_match, "f1": f1, "recall": recall, "precision": precision}
67
-
68
- def normalize_answer(s):
69
- """Lower text and remove punctuation, articles and extra whitespace."""
70
-
71
- def remove_articles(text):
72
- return re.sub(r"\b(a|an|the)\b", " ", text)
73
-
74
- def white_space_fix(text):
75
- return " ".join(text.split())
76
-
77
- def remove_punc(text):
78
- exclude = set(string.punctuation)
79
- return "".join(ch for ch in text if ch not in exclude)
80
-
81
- def lower(text):
82
- return text.lower()
83
-
84
- return white_space_fix(remove_articles(remove_punc(lower(s))))
85
-
86
-
87
- def f1_score(prediction, ground_truth):
88
- prediction_tokens = normalize_answer(prediction).split()
89
- ground_truth_tokens = normalize_answer(ground_truth).split()
90
- common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
91
- num_same = sum(common.values())
92
- if num_same == 0:
93
- return 0
94
- precision = 1.0 * num_same / len(prediction_tokens)
95
- recall = 1.0 * num_same / len(ground_truth_tokens)
96
- f1 = (2 * precision * recall) / (precision + recall)
97
- return f1, precision, recall
98
-
99
-
100
- def exact_match_score(prediction, ground_truth):
101
- return normalize_answer(prediction) == normalize_answer(ground_truth)
102
-
103
-
104
- def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
105
- scores_for_ground_truths = []
106
- for ground_truth in ground_truths:
107
- score = metric_fn(prediction, ground_truth)
108
- scores_for_ground_truths.append(score)
109
- return max(scores_for_ground_truths)