system HF staff commited on
Commit
a297ef1
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - n<1K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - structure-prediction
18
+ task_ids:
19
+ - coreference-resolution
20
+ ---
21
+
22
+ # Dataset Card for The Winograd Schema Challenge
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html
50
+ - **Repository:**
51
+ - **Paper:** https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.729.9814&rep=rep1&type=pdf
52
+ - **Leaderboard:**
53
+ - **Point of Contact:**
54
+
55
+ ### Dataset Summary
56
+
57
+ A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is
58
+ resolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its
59
+ resolution. The schema takes its name from a well-known example by Terry Winograd:
60
+
61
+ > The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.
62
+
63
+ If the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they''
64
+ presumably refers to the demonstrators.
65
+
66
+ ### Supported Tasks and Leaderboards
67
+
68
+ From the official webpage:
69
+
70
+ > A contest, entitled the Winograd Schema Challenge was run once, in 2016. At that time, there was a cash prize
71
+ offered for achieving human-level performance in the contest. Since then, the sponsor has withdrawn; therefore NO
72
+ CASH PRIZES CAN BE OFFERED OR WILL BE AWARDED FOR ANY KIND OF PERFORMANCE OR ACHIEVEMENT ON THIS CHALLENGE.
73
+
74
+ ### Languages
75
+
76
+ The dataset is in English.
77
+
78
+ [Translation of 12 WSs into Chinese ](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSChinese.html)(translated by Wei Xu).
79
+
80
+ Translations into Japanese, by Soichiro Tanaka, Rafal Rzepka, and Shiho Katajima\
81
+ **Translation changing English names to Japanese **[PDF ](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/collection_ja.pdf)    [HTML](http://arakilab.media.eng.hokudai.ac.jp/~kabura/collection_ja.html)\
82
+ **Translation preserving English names** [PDF ](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/collection_katakana.pdf)    [HTML](http://arakilab.media.eng.hokudai.ac.jp/~kabura/collection_katakana.html)
83
+
84
+ [Translation into French, ](http://www.llf.cnrs.fr/winograd-fr)by Pascal Amsili and Olga Seminck
85
+
86
+ [Winograd Schemas in Portuguese](https://sol.sbc.org.br/index.php/eniac/article/view/9334) by Gabriela Melo, Vinicius Imaizumi, and Fábio Cozman.
87
+
88
+ [Mandarinograd: A Chinese Collection of Winograd Schemas](https://www.aclweb.org/anthology/2020.lrec-1.3) by Timothée Bernard and Ting Han, LREC-2020.
89
+
90
+ ## Dataset Structure
91
+
92
+ ### Data Instances
93
+
94
+ Each instance contains a text passage with a designated pronoun and two possible answers indicating which entity in
95
+ the passage the pronoun represents. An example instance looks like the following:
96
+
97
+ ```python
98
+ {
99
+ 'label': 0,
100
+ 'options': ['The city councilmen', 'The demonstrators'],
101
+ 'pronoun': 'they',
102
+ 'pronoun_loc': 63,
103
+ 'quote': 'they feared violence',
104
+ 'quote_loc': 63,
105
+ 'source': '(Winograd 1972)',
106
+ 'text': 'The city councilmen refused the demonstrators a permit because they feared violence.'
107
+ }
108
+ ```
109
+
110
+ ### Data Fields
111
+
112
+ - `text` (str): The text sequence
113
+ - `options` (list[str]): The two entity options that the pronoun may be referring to
114
+ - `label` (int): The index of the correct option in the `options` field
115
+ - `pronoun` (str): The pronoun in the sequence to be resolved
116
+ - `pronoun_loc` (int): The starting position of the pronoun in the sequence
117
+ - `quote` (str): The substr with the key action or context surrounding the pronoun
118
+ - `quote_loc` (int): The starting position of the quote in the sequence
119
+ - `source` (str): A description of the source who contributed the example
120
+
121
+ ### Data Splits
122
+
123
+ Only a test split is included.
124
+
125
+ ## Dataset Creation
126
+
127
+ ### Curation Rationale
128
+
129
+ The Winograd Schema Challenge was proposed as an automated evaluation of an AI system's commonsense linguistic
130
+ understanding. From the webpage:
131
+
132
+ > The strengths of the challenge are that it is clear-cut, in that the answer to each schema is a binary choice;
133
+ vivid, in that it is obvious to non-experts that a program that fails to get the right answers clearly has serious
134
+ gaps in its understanding; and difficult, in that it is far beyond the current state of the art.
135
+
136
+ ### Source Data
137
+
138
+ #### Initial Data Collection and Normalization
139
+
140
+ This data was manually written by experts such that the schemas are:
141
+
142
+ - easily disambiguated by the human reader (ideally, so easily that the reader does not even notice that there is an ambiguity);
143
+
144
+ - not solvable by simple techniques such as selectional restrictions;
145
+
146
+ - Google-proof; that is, there is no obvious statistical test over text corpora that will reliably disambiguate these correctly.
147
+
148
+ #### Who are the source language producers?
149
+
150
+ This dataset has grown over time, and so was produced by a variety of lingustic and AI researchers. See the `source`
151
+ field for the source of each instance.
152
+
153
+ ### Annotations
154
+
155
+ #### Annotation process
156
+
157
+ Annotations are produced by the experts who construct the examples.
158
+
159
+ #### Who are the annotators?
160
+
161
+ See above.
162
+
163
+ ### Personal and Sensitive Information
164
+
165
+ [More Information Needed]
166
+
167
+ ## Considerations for Using the Data
168
+
169
+ ### Social Impact of Dataset
170
+
171
+ [More Information Needed]
172
+
173
+ ### Discussion of Biases
174
+
175
+ [More Information Needed]
176
+
177
+ ### Other Known Limitations
178
+
179
+ [More Information Needed]
180
+
181
+ ## Additional Information
182
+
183
+ ### Dataset Curators
184
+
185
+ This dataset has grown over time, and so was produced by a variety of lingustic and AI researchers. See the `source`
186
+ field for the source of each instance.
187
+
188
+ ### Licensing Information
189
+
190
+ This work is licensed under a [Creative Commons Attribution 4.0 International
191
+ License](https://creativecommons.org/licenses/by/4.0/).
192
+
193
+ ### Citation Information
194
+
195
+ The Winograd Schema Challenge including many of the examples here was proposed by
196
+ [Levesque et al 2012](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.729.9814&rep=rep1&type=pdf):
197
+
198
+ ```
199
+ @inproceedings{levesque2012winograd,
200
+ title={The winograd schema challenge},
201
+ author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
202
+ booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
203
+ year={2012},
204
+ organization={Citeseer}
205
+ }
206
+ ```
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"wsc285": {"description": "A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is\nresolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its\nresolution. The schema takes its name from a well-known example by Terry Winograd:\n\n> The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.\n\nIf the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they''\npresumably refers to the demonstrators.\n", "citation": "@inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012},\n organization={Citeseer}\n}\n", "homepage": "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "pronoun": {"dtype": "string", "id": null, "_type": "Value"}, "pronoun_loc": {"dtype": "int32", "id": null, "_type": "Value"}, "quote": {"dtype": "string", "id": null, "_type": "Value"}, "quote_loc": {"dtype": "int32", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "label": {"num_classes": 2, "names": ["0", "1"], "names_file": null, "id": null, "_type": "ClassLabel"}, "source": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winograd_wsc", "config_name": "wsc285", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 52281, "num_examples": 285, "dataset_name": "winograd_wsc"}}, "download_checksums": {"https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml": {"num_bytes": 113235, "checksum": "98c845a5b33c109f2c49742e726fac592bbb1fdc3b3706b604de12f9c9f58c91"}}, "download_size": 113235, "post_processing_size": null, "dataset_size": 52281, "size_in_bytes": 165516}, "wsc273": {"description": "A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is\nresolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its\nresolution. The schema takes its name from a well-known example by Terry Winograd:\n\n> The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.\n\nIf the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they''\npresumably refers to the demonstrators.\n", "citation": "@inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012},\n organization={Citeseer}\n}\n", "homepage": "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "pronoun": {"dtype": "string", "id": null, "_type": "Value"}, "pronoun_loc": {"dtype": "int32", "id": null, "_type": "Value"}, "quote": {"dtype": "string", "id": null, "_type": "Value"}, "quote_loc": {"dtype": "int32", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "label": {"num_classes": 2, "names": ["0", "1"], "names_file": null, "id": null, "_type": "ClassLabel"}, "source": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winograd_wsc", "config_name": "wsc273", "version": "0.0.0", "splits": {"test": {"name": "test", "num_bytes": 49674, "num_examples": 273, "dataset_name": "winograd_wsc"}}, "download_checksums": {"https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml": {"num_bytes": 113235, "checksum": "98c845a5b33c109f2c49742e726fac592bbb1fdc3b3706b604de12f9c9f58c91"}}, "download_size": 113235, "post_processing_size": null, "dataset_size": 49674, "size_in_bytes": 162909}}
dummy/wsc273/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dd8e89c220245d7d350de5c82695282b799125de469511d187f96a4784f3a5f
3
+ size 672
dummy/wsc285/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dd8e89c220245d7d350de5c82695282b799125de469511d187f96a4784f3a5f
3
+ size 672
winograd_wsc.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """The Winograd Schema Challenge Dataset"""
16
+
17
+ import xml.etree.ElementTree as ET
18
+
19
+ import datasets
20
+
21
+
22
+ _DESCRIPTION = """\
23
+ A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is
24
+ resolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its
25
+ resolution. The schema takes its name from a well-known example by Terry Winograd:
26
+
27
+ > The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.
28
+
29
+ If the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they''
30
+ presumably refers to the demonstrators.
31
+ """
32
+
33
+ _CITATION = """\
34
+ @inproceedings{levesque2012winograd,
35
+ title={The winograd schema challenge},
36
+ author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
37
+ booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
38
+ year={2012},
39
+ organization={Citeseer}
40
+ }
41
+ """
42
+
43
+ _HOMPAGE = "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html"
44
+ _DOWNLOAD_URL = "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml"
45
+
46
+
47
+ class WinogradWSCConfig(datasets.BuilderConfig):
48
+ """ BuilderConfig for WinogradWSC. """
49
+
50
+ def __init__(self, *args, language=None, inds=None, **kwargs):
51
+ super().__init__(*args, **kwargs)
52
+ self.inds = set(inds) if inds is not None else None
53
+
54
+ def is_in_range(self, id):
55
+ """ Takes an index and tells you if it belongs to the configuration's subset """
56
+ return id in self.inds if self.inds is not None else True
57
+
58
+
59
+ class WinogradWSC(datasets.GeneratorBasedBuilder):
60
+ """ The Winograd Schema Challenge Dataset """
61
+
62
+ BUILDER_CONFIG_CLASS = WinogradWSCConfig
63
+ BUILDER_CONFIGS = [
64
+ WinogradWSCConfig(
65
+ name="wsc285",
66
+ description="Full set of winograd examples",
67
+ ),
68
+ WinogradWSCConfig(
69
+ name="wsc273",
70
+ description="A commonly-used subset of examples. Identical to 'wsc285' but without the last 12 examples.",
71
+ inds=list(range(273)),
72
+ ),
73
+ ]
74
+
75
+ def _info(self):
76
+ return datasets.DatasetInfo(
77
+ description=_DESCRIPTION,
78
+ features=datasets.Features(
79
+ {
80
+ "text": datasets.Value("string"),
81
+ "pronoun": datasets.Value("string"),
82
+ "pronoun_loc": datasets.Value("int32"),
83
+ "quote": datasets.Value("string"),
84
+ "quote_loc": datasets.Value("int32"),
85
+ "options": datasets.Sequence(datasets.Value("string")),
86
+ "label": datasets.ClassLabel(num_classes=2),
87
+ "source": datasets.Value("string"),
88
+ }
89
+ ),
90
+ homepage=_HOMPAGE,
91
+ citation=_CITATION,
92
+ )
93
+
94
+ def _split_generators(self, dl_manager):
95
+ path = dl_manager.download_and_extract(_DOWNLOAD_URL)
96
+ return [
97
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path}),
98
+ ]
99
+
100
+ def _cleanup_whitespace(self, text):
101
+ return " ".join(text.split())
102
+
103
+ def _generate_examples(self, filepath):
104
+ tree = ET.parse(filepath)
105
+ for id, schema in enumerate(tree.getroot()):
106
+ if not self.config.is_in_range(id):
107
+ continue
108
+
109
+ text_root = schema.find("text")
110
+ quote_root = schema.find("quote")
111
+
112
+ text_left = self._cleanup_whitespace(text_root.findtext("txt1", ""))
113
+ text_right = self._cleanup_whitespace(text_root.findtext("txt2", ""))
114
+ quote_left = self._cleanup_whitespace(quote_root.findtext("quote1", ""))
115
+ quote_right = self._cleanup_whitespace(quote_root.findtext("quote2", ""))
116
+ pronoun = self._cleanup_whitespace(text_root.findtext("pron"))
117
+
118
+ features = {}
119
+ features["text"] = " ".join([text_left, pronoun, text_right]).strip()
120
+ features["quote"] = " ".join([quote_left, pronoun, quote_right]).strip()
121
+
122
+ features["pronoun"] = pronoun
123
+ features["options"] = [
124
+ self._cleanup_whitespace(option.text) for option in schema.find("answers").findall("answer")
125
+ ]
126
+
127
+ answer_txt = self._cleanup_whitespace(schema.findtext("correctAnswer"))
128
+ features["label"] = int("B" in answer_txt) # convert " A. " or " B " strings to a 0/1 index
129
+
130
+ features["pronoun_loc"] = len(text_left) + 1 if len(text_left) > 0 else 0
131
+ features["quote_loc"] = features["pronoun_loc"] - (len(quote_left) + 1 if len(quote_left) > 0 else 0)
132
+ features["source"] = self._cleanup_whitespace(schema.findtext("source"))
133
+
134
+ yield id, features