Create headqa.py
Browse files
headqa.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# NOTE: This is an exact copy of
|
16 |
+
# https://github.com/huggingface/datasets/blob/3804442bb7cfcb9d52044d92688115cfdc69c2da/datasets/head_qa/head_qa.py
|
17 |
+
# with the exception of the `image` feature. This is to avoid adding `Pillow`
|
18 |
+
# as a dependency.
|
19 |
+
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning."""
|
20 |
+
|
21 |
+
|
22 |
+
import json
|
23 |
+
import os
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{vilares-gomez-rodriguez-2019-head,
|
30 |
+
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning",
|
31 |
+
author = "Vilares, David and
|
32 |
+
G{\'o}mez-Rodr{\'i}guez, Carlos",
|
33 |
+
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
|
34 |
+
month = jul,
|
35 |
+
year = "2019",
|
36 |
+
address = "Florence, Italy",
|
37 |
+
publisher = "Association for Computational Linguistics",
|
38 |
+
url = "https://www.aclweb.org/anthology/P19-1092",
|
39 |
+
doi = "10.18653/v1/P19-1092",
|
40 |
+
pages = "960--966",
|
41 |
+
abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.",
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the
|
47 |
+
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio
|
48 |
+
de Sanidad, Consumo y Bienestar Social.
|
49 |
+
The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.
|
50 |
+
"""
|
51 |
+
|
52 |
+
_HOMEPAGE = "https://aghie.github.io/head-qa/"
|
53 |
+
|
54 |
+
_LICENSE = "MIT License"
|
55 |
+
|
56 |
+
_URL = "https://drive.google.com/uc?export=download&confirm=t&id=1a_95N5zQQoUCq8IBNVZgziHbeM-QxG2t"
|
57 |
+
|
58 |
+
_DIRS = {"es": "HEAD", "en": "HEAD_EN"}
|
59 |
+
|
60 |
+
|
61 |
+
class HeadQA(datasets.GeneratorBasedBuilder):
|
62 |
+
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning"""
|
63 |
+
|
64 |
+
VERSION = datasets.Version("1.1.0")
|
65 |
+
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
datasets.BuilderConfig(
|
68 |
+
name="es", version=VERSION, description="Spanish HEAD dataset"
|
69 |
+
),
|
70 |
+
datasets.BuilderConfig(
|
71 |
+
name="en", version=VERSION, description="English HEAD dataset"
|
72 |
+
),
|
73 |
+
]
|
74 |
+
|
75 |
+
DEFAULT_CONFIG_NAME = "es"
|
76 |
+
|
77 |
+
def _info(self):
|
78 |
+
return datasets.DatasetInfo(
|
79 |
+
description=_DESCRIPTION,
|
80 |
+
features=datasets.Features(
|
81 |
+
{
|
82 |
+
"name": datasets.Value("string"),
|
83 |
+
"year": datasets.Value("string"),
|
84 |
+
"category": datasets.Value("string"),
|
85 |
+
"qid": datasets.Value("int32"),
|
86 |
+
"qtext": datasets.Value("string"),
|
87 |
+
"ra": datasets.Value("int32"),
|
88 |
+
"answers": [
|
89 |
+
{
|
90 |
+
"aid": datasets.Value("int32"),
|
91 |
+
"atext": datasets.Value("string"),
|
92 |
+
}
|
93 |
+
],
|
94 |
+
}
|
95 |
+
),
|
96 |
+
supervised_keys=None,
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
license=_LICENSE,
|
99 |
+
citation=_CITATION,
|
100 |
+
)
|
101 |
+
|
102 |
+
def _split_generators(self, dl_manager):
|
103 |
+
"""Returns SplitGenerators."""
|
104 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
105 |
+
|
106 |
+
dir = _DIRS[self.config.name]
|
107 |
+
data_lang_dir = os.path.join(data_dir, dir)
|
108 |
+
|
109 |
+
return [
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TRAIN,
|
112 |
+
gen_kwargs={
|
113 |
+
"data_dir": data_dir,
|
114 |
+
"filepath": os.path.join(data_lang_dir, f"train_{dir}.json"),
|
115 |
+
},
|
116 |
+
),
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name=datasets.Split.TEST,
|
119 |
+
gen_kwargs={
|
120 |
+
"data_dir": data_dir,
|
121 |
+
"filepath": os.path.join(data_lang_dir, f"test_{dir}.json"),
|
122 |
+
},
|
123 |
+
),
|
124 |
+
datasets.SplitGenerator(
|
125 |
+
name=datasets.Split.VALIDATION,
|
126 |
+
gen_kwargs={
|
127 |
+
"data_dir": data_dir,
|
128 |
+
"filepath": os.path.join(data_lang_dir, f"dev_{dir}.json"),
|
129 |
+
},
|
130 |
+
),
|
131 |
+
]
|
132 |
+
|
133 |
+
def _generate_examples(self, data_dir, filepath):
|
134 |
+
"""Yields examples."""
|
135 |
+
with open(filepath, encoding="utf-8") as f:
|
136 |
+
head_qa = json.load(f)
|
137 |
+
for exam_id, exam in enumerate(head_qa["exams"]):
|
138 |
+
content = head_qa["exams"][exam]
|
139 |
+
name = content["name"].strip()
|
140 |
+
year = content["year"].strip()
|
141 |
+
category = content["category"].strip()
|
142 |
+
for question in content["data"]:
|
143 |
+
qid = int(question["qid"].strip())
|
144 |
+
qtext = question["qtext"].strip()
|
145 |
+
ra = int(question["ra"].strip())
|
146 |
+
|
147 |
+
aids = [answer["aid"] for answer in question["answers"]]
|
148 |
+
atexts = [answer["atext"].strip() for answer in question["answers"]]
|
149 |
+
answers = [
|
150 |
+
{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)
|
151 |
+
]
|
152 |
+
|
153 |
+
id_ = f"{exam_id}_{qid}"
|
154 |
+
yield id_, {
|
155 |
+
"name": name,
|
156 |
+
"year": year,
|
157 |
+
"category": category,
|
158 |
+
"qid": qid,
|
159 |
+
"qtext": qtext,
|
160 |
+
"ra": ra,
|
161 |
+
"answers": answers,
|
162 |
+
}
|