|
from collections import defaultdict |
|
import os |
|
import json |
|
import csv |
|
|
|
import datasets |
|
|
|
_BASE_DATA_DIR = "data/" |
|
|
|
_AUDIO_ARCHIVE_PATH = _BASE_DATA_DIR + "{split}/{split}_dataset.tar.gz" |
|
|
|
_METADATA_PATH = _BASE_DATA_DIR + "{split}.tsv" |
|
|
|
class Hyvoxpopuli(datasets.GeneratorBasedBuilder): |
|
"""The HyVoxPopuli dataset.""" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"audio_id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"raw_text": datasets.Value("string"), |
|
"normalized_text": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"is_gold_transcript": datasets.Value("bool"), |
|
"accent": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
features=features |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
splits = ["train", "dev", "test"] |
|
|
|
audio_urls = defaultdict(dict) |
|
for split in splits: |
|
audio_urls[split] = [_AUDIO_ARCHIVE_PATH.format(split=split)] |
|
|
|
meta_urls = defaultdict(dict) |
|
for split in splits: |
|
meta_urls[split] = _METADATA_PATH.format(split=split) |
|
|
|
|
|
|
|
meta_paths = dl_manager.download_and_extract(meta_urls) |
|
audio_paths = dl_manager.download(audio_urls) |
|
|
|
local_extracted_audio_paths = ( |
|
dl_manager.extract(audio_paths) |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["train"], |
|
"metadata_paths": meta_paths["train"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["dev"], |
|
"metadata_paths": meta_paths["dev"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["test"], |
|
"metadata_paths": meta_paths["test"], |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths): |
|
features = ["raw_text", "normalized_text", "speaker_id", "gender", "is_gold_transcript", "accent"] |
|
|
|
meta_path = metadata_paths |
|
with open(meta_path) as f: |
|
metadata = {x["id"]: x for x in csv.DictReader(f, delimiter="\t")} |
|
|
|
for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths): |
|
for audio_filename, audio_file in audio_archive: |
|
audio_id = audio_filename.split(os.sep)[-1].split(".wav")[0] |
|
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename |
|
|
|
yield audio_id, { |
|
"audio_id": audio_id, |
|
**{feature: metadata[audio_id][feature] for feature in features}, |
|
"audio": {"path": path, "bytes": audio_file.read()}, |
|
} |