|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Biwi Kinect Head Pose Database.""" |
|
|
|
|
|
import glob |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{fanelli_IJCV, |
|
author = {Fanelli, Gabriele and Dantone, Matthias and Gall, Juergen and Fossati, Andrea and Van Gool, Luc}, |
|
title = {Random Forests for Real Time 3D Face Analysis}, |
|
journal = {Int. J. Comput. Vision}, |
|
year = {2013}, |
|
month = {February}, |
|
volume = {101}, |
|
number = {3}, |
|
pages = {437--458} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The Biwi Kinect Head Pose Database is acquired with the Microsoft Kinect sensor, a structured IR light device.It contains 15K images of 20 people with 6 females and 14 males where 4 people were recorded twice. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://icu.ee.ethz.ch/research/datsets.html" |
|
|
|
|
|
_LICENSE = "This database is made available for non-commercial use such as university research and education." |
|
|
|
|
|
_URLS = { |
|
"kinect_head_pose_db": "https://data.vision.ee.ethz.ch/cvl/gfanelli/kinect_head_pose_db.tgz", |
|
} |
|
|
|
_sequence_to_subject_map = { |
|
"01": "F01", |
|
"02": "F02", |
|
"03": "F03", |
|
"04": "F04", |
|
"05": "F05", |
|
"06": "F06", |
|
"07": "M01", |
|
"08": "M02", |
|
"09": "M03", |
|
"10": "M04", |
|
"11": "M05", |
|
"12": "M06", |
|
"13": "M07", |
|
"14": "M08", |
|
"15": "F03", |
|
"16": "M09", |
|
"17": "M10", |
|
"18": "F05", |
|
"19": "M11", |
|
"20": "M12", |
|
"21": "F02", |
|
"22": "M01", |
|
"23": "M13", |
|
"24": "M14", |
|
} |
|
|
|
|
|
class BiwiKinectHeadPose(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"sequence_number": datasets.Value("string"), |
|
"subject_id": datasets.Value("string"), |
|
"rgb": datasets.Sequence(datasets.Image()), |
|
"rgb_cal": { |
|
"intrisic_mat": datasets.Array2D(shape=(3, 3), dtype="float64"), |
|
"extrinsic_mat": { |
|
"rotation": datasets.Array2D(shape=(3, 3), dtype="float64"), |
|
"translation": datasets.Sequence(datasets.Value("float64"), length=3), |
|
}, |
|
}, |
|
"depth": datasets.Sequence(datasets.Value("string")), |
|
"depth_cal": { |
|
"intrisic_mat": datasets.Array2D(shape=(3, 3), dtype="float64"), |
|
"extrinsic_mat": { |
|
"rotation": datasets.Array2D(shape=(3, 3), dtype="float64"), |
|
"translation": datasets.Sequence(datasets.Value("float64"), length=3), |
|
}, |
|
}, |
|
"head_pose_gt": datasets.Sequence( |
|
{ |
|
"center": datasets.Sequence(datasets.Value("float64"), length=3), |
|
"rotation": datasets.Array2D(shape=(3, 3), dtype="float64"), |
|
} |
|
), |
|
"head_template": datasets.Value("string"), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dataset_path": os.path.join(data_dir["kinect_head_pose_db"], "hpdb"), |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def _get_calibration_information(cal_file_path): |
|
with open(cal_file_path, "r", encoding="utf-8") as f: |
|
cal_info = f.read().splitlines() |
|
|
|
intrisic_mat = [] |
|
extrinsic_mat = [] |
|
|
|
for data in cal_info[:3]: |
|
row = list(map(float, data.strip().split(" "))) |
|
intrisic_mat.append(row) |
|
|
|
for data in cal_info[6:9]: |
|
row = list(map(float, data.strip().split(" "))) |
|
extrinsic_mat.append(row) |
|
|
|
translation = list(map(float, cal_info[10].strip().split(" "))) |
|
|
|
return { |
|
"intrisic_mat": intrisic_mat, |
|
"extrinsic_mat": { |
|
"rotation": extrinsic_mat, |
|
"translation": translation, |
|
}, |
|
} |
|
|
|
@staticmethod |
|
def _parse_head_pose_info(head_pose_file): |
|
with open(head_pose_file, "r", encoding="utf-8") as f: |
|
head_pose_info = f.read().splitlines() |
|
|
|
rotation = [] |
|
for data in head_pose_info[:3]: |
|
row = list(map(float, data.strip().split(" "))) |
|
rotation.append(row) |
|
|
|
center = list(map(float, head_pose_info[4].strip().split(" "))) |
|
|
|
return { |
|
"center": center, |
|
"rotation": rotation, |
|
} |
|
|
|
@staticmethod |
|
def _get_head_pose_information(path): |
|
head_pose_files = sorted(glob.glob(os.path.join(path, "*_pose.txt"))) |
|
|
|
head_poses_info = [] |
|
|
|
for head_pose_file in head_pose_files: |
|
head_pose = BiwiKinectHeadPose._parse_head_pose_info(head_pose_file) |
|
head_poses_info.append(head_pose) |
|
|
|
return head_poses_info |
|
|
|
def _generate_examples(self, dataset_path): |
|
|
|
idx = 0 |
|
folders = os.listdir(dataset_path) |
|
for item in folders: |
|
sequence_number = item |
|
sequence_base_path = os.path.join(dataset_path, sequence_number) |
|
if os.path.isdir(sequence_base_path): |
|
rgb_files = sorted(glob.glob(os.path.join(sequence_base_path, "*.png"))) |
|
depth_files = sorted(glob.glob(os.path.join(sequence_base_path, "*.bin"))) |
|
head_template_path = os.path.join(dataset_path, sequence_number + ".obj") |
|
rgb_cal = self._get_calibration_information(os.path.join(sequence_base_path, "rgb.cal")) |
|
depth_cal = self._get_calibration_information(os.path.join(sequence_base_path, "depth.cal")) |
|
head_pose_gt = self._get_head_pose_information(sequence_base_path) |
|
|
|
yield idx, { |
|
"sequence_number": sequence_number, |
|
"subject_id": _sequence_to_subject_map[sequence_number], |
|
"rgb": rgb_files, |
|
"rgb_cal": rgb_cal, |
|
"depth": depth_files, |
|
"depth_cal": depth_cal, |
|
"head_pose_gt": head_pose_gt, |
|
"head_template": head_template_path, |
|
} |
|
|
|
idx += 1 |
|
|