Datasets:
Thomas Lemberger
commited on
Commit
·
dd93e10
1
Parent(s):
912fe52
loader
Browse files
sd-nlp.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and Thomas Lemberger.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""SourceDataNLP dataset."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_NER_LABEL_NAMES = [
|
26 |
+
"O",
|
27 |
+
"I-SMALL_MOLECULE",
|
28 |
+
"B-SMALL_MOLECULE",
|
29 |
+
"I-GENEPROD",
|
30 |
+
"B-GENEPROD",
|
31 |
+
"I-SUBCELLULAR",
|
32 |
+
"B-SUBCELLULAR",
|
33 |
+
"I-CELL",
|
34 |
+
"B-CELL",
|
35 |
+
"I-TISSUE",
|
36 |
+
"B-TISSUE",
|
37 |
+
"I-ORGANISM",
|
38 |
+
"B-ORGANISM",
|
39 |
+
"I-EXP_ASSAY",
|
40 |
+
"B-EXP_ASSAY",
|
41 |
+
]
|
42 |
+
_SEMANTIC_ROLES_LABEL_NAMES = ["O", "I-CONTROLLED_VAR", "B-CONTROLLED_VAR", "I-MEASURED_VAR", "B-MEASURED_VAR"]
|
43 |
+
_BORING_LABEL_NAMES = ["O", "I-BORING", "B-BORING"]
|
44 |
+
_PANEL_START_NAMES = ["O", "B-PANEL_START"]
|
45 |
+
|
46 |
+
_CITATION = """\
|
47 |
+
@Unpublished{
|
48 |
+
huggingface: dataset,
|
49 |
+
title = {SourceData NLP},
|
50 |
+
authors={Thomas Lemberger, EMBO},
|
51 |
+
year={2021}
|
52 |
+
}
|
53 |
+
"""
|
54 |
+
|
55 |
+
_DESCRIPTION = """\
|
56 |
+
This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain.
|
57 |
+
"""
|
58 |
+
|
59 |
+
_HOMEPAGE = "https://huggingface.co/datasets/EMBO/sd-nlp"
|
60 |
+
|
61 |
+
_LICENSE = "CC-BY 4.0"
|
62 |
+
|
63 |
+
_URLS = {
|
64 |
+
"NER": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_panels.zip",
|
65 |
+
"ROLES": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_panels.zip",
|
66 |
+
"BORING": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_panels.zip",
|
67 |
+
"PANELIZATION": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_figs.zip",
|
68 |
+
}
|
69 |
+
|
70 |
+
class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
71 |
+
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
|
72 |
+
|
73 |
+
VERSION = datasets.Version("0.0.1")
|
74 |
+
|
75 |
+
BUILDER_CONFIGS = [
|
76 |
+
datasets.BuilderConfig(name="NER", version="0.0.1", description="Dataset for entity recognition"),
|
77 |
+
datasets.BuilderConfig(name="ROLES", version="0.0.1", description="Dataset for semantic roles."),
|
78 |
+
datasets.BuilderConfig(name="BORING", version="0.0.1", description="Dataset for semantic roles."),
|
79 |
+
datasets.BuilderConfig(
|
80 |
+
name="PANELIZATION",
|
81 |
+
version="0.0.1",
|
82 |
+
description="Dataset for figure legend segmentation into panel-specific legends.",
|
83 |
+
),
|
84 |
+
]
|
85 |
+
|
86 |
+
DEFAULT_CONFIG_NAME = "NER"
|
87 |
+
|
88 |
+
def _info(self):
|
89 |
+
if self.config.name == "NER":
|
90 |
+
features = datasets.Features(
|
91 |
+
{
|
92 |
+
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
|
93 |
+
"labels": datasets.Sequence(
|
94 |
+
feature=datasets.ClassLabel(num_classes=len(_NER_LABEL_NAMES), names=_NER_LABEL_NAMES)
|
95 |
+
),
|
96 |
+
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
97 |
+
}
|
98 |
+
)
|
99 |
+
elif self.config.name == "ROLES":
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
|
103 |
+
"labels": datasets.Sequence(
|
104 |
+
feature=datasets.ClassLabel(
|
105 |
+
num_classes=len(_SEMANTIC_ROLES_LABEL_NAMES), names=_SEMANTIC_ROLES_LABEL_NAMES
|
106 |
+
)
|
107 |
+
),
|
108 |
+
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
109 |
+
}
|
110 |
+
)
|
111 |
+
elif self.config.name == "BORING":
|
112 |
+
features = datasets.Features(
|
113 |
+
{
|
114 |
+
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
|
115 |
+
"labels": datasets.Sequence(
|
116 |
+
feature=datasets.ClassLabel(num_classes=len(_BORING_LABEL_NAMES), names=_BORING_LABEL_NAMES)
|
117 |
+
),
|
118 |
+
}
|
119 |
+
)
|
120 |
+
elif self.config.name == "PANELIZATION":
|
121 |
+
features = datasets.Features(
|
122 |
+
{
|
123 |
+
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
|
124 |
+
"labels": datasets.Sequence(
|
125 |
+
feature=datasets.ClassLabel(num_classes=len(_PANEL_START_NAMES), names=_PANEL_START_NAMES)
|
126 |
+
),
|
127 |
+
}
|
128 |
+
)
|
129 |
+
|
130 |
+
return datasets.DatasetInfo(
|
131 |
+
description=_DESCRIPTION,
|
132 |
+
features=features,
|
133 |
+
supervised_keys=("input_ids", "labels"),
|
134 |
+
homepage=_HOMEPAGE,
|
135 |
+
license=_LICENSE,
|
136 |
+
citation=_CITATION,
|
137 |
+
)
|
138 |
+
|
139 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
140 |
+
"""Returns SplitGenerators.
|
141 |
+
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url."""
|
142 |
+
if self.config.data_dir:
|
143 |
+
data_dir = self.config.data_dir
|
144 |
+
else:
|
145 |
+
url = _URLS[self.config.name]
|
146 |
+
data_dir = dl_manager.download_and_extract(url)
|
147 |
+
if self.config.name in ["NER", "ROLES", "BORING"]:
|
148 |
+
data_dir += "/sd_panels"
|
149 |
+
elif self.config.name == "PANELIZATION":
|
150 |
+
data_dir += "/sd_figs"
|
151 |
+
else:
|
152 |
+
raise ValueError(f"unkonwn config name: {self.config.name}")
|
153 |
+
return [
|
154 |
+
datasets.SplitGenerator(
|
155 |
+
name=datasets.Split.TRAIN,
|
156 |
+
# These kwargs will be passed to _generate_examples
|
157 |
+
gen_kwargs={
|
158 |
+
"filepath": data_dir + "/train.jsonl",
|
159 |
+
"split": "train",
|
160 |
+
},
|
161 |
+
),
|
162 |
+
datasets.SplitGenerator(
|
163 |
+
name=datasets.Split.TEST,
|
164 |
+
gen_kwargs={
|
165 |
+
"filepath": data_dir + "/test.jsonl",
|
166 |
+
"split": "test"},
|
167 |
+
),
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name=datasets.Split.VALIDATION,
|
170 |
+
gen_kwargs={
|
171 |
+
"filepath": data_dir + "/eval.jsonl",
|
172 |
+
"split": "eval",
|
173 |
+
},
|
174 |
+
),
|
175 |
+
]
|
176 |
+
|
177 |
+
def _generate_examples(self, filepath, split):
|
178 |
+
"""Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
|
179 |
+
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
180 |
+
The key is not important, it's more here for legacy reason (legacy from tfds)"""
|
181 |
+
|
182 |
+
with open(filepath, encoding="utf-8") as f:
|
183 |
+
for id_, row in enumerate(f):
|
184 |
+
data = json.loads(row)
|
185 |
+
if self.config.name == "NER":
|
186 |
+
labels_type = data["label_ids"]["entity_types"]
|
187 |
+
tag_mask = [0 if tag == "O" else 1 for tag in labels_type]
|
188 |
+
yield id_, {"input_ids": data["input_ids"], "labels": labels_type, "tag_mask": tag_mask}
|
189 |
+
elif self.config.name == "ROLES":
|
190 |
+
labels_type = data["label_ids"]["entity_types"]
|
191 |
+
geneprod = ["B-GENEPROD", "I-GENEPROD", "B-PROTEIN", "I-PROTEIN", "B-GENE", "I-GENE"]
|
192 |
+
tag_mask = [1 if t in geneprod else 0 for t in labels_type]
|
193 |
+
yield id_, {
|
194 |
+
"input_ids": data["input_ids"],
|
195 |
+
"labels": data["label_ids"]["geneprod_roles"],
|
196 |
+
"tag_mask": tag_mask,
|
197 |
+
}
|
198 |
+
elif self.config.name == "BORING":
|
199 |
+
yield id_, {"input_ids": data["input_ids"], "labels": data["label_ids"]["boring"]}
|
200 |
+
elif self.config.name == "PANELIZATION":
|
201 |
+
yield id_, {
|
202 |
+
"input_ids": data["input_ids"],
|
203 |
+
"labels": data["label_ids"]["panel_start"],
|
204 |
+
}
|