sfisch commited on
Commit
fb01330
·
verified ·
1 Parent(s): 1708556

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -3
README.md CHANGED
@@ -1,3 +1,46 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - structural_biology
5
+ - PPIs
6
+ - mass_spectrometry
7
+ - AlphaFold
8
+ pretty_name: >-
9
+ DirectContacts2: A network of direct physical protein interactions derived
10
+ from high throughput mass spectrometry experiments
11
+ repo: https://github.com/KDrewLab/DirectContacts2_analysis.git
12
+ ---
13
+ # DirectContacts2: A network of direct physical protein interactions derived from high throughput mass spectrometry experiments
14
+ Proteins carry out cellular functions by self-assembling into functional complexes, a process that depends on direct physical interactions
15
+ between components. While tools like AlphaFold and RoseTTAFold have advanced structure prediction, they remain limited in scaling to the full
16
+ human proteome. DirectContacts2 addresses this challenge by integrating diverse large-scale datasets, including AP/MS (BioPlex1–3, Boldt et al., Hein et al.),
17
+ biochemical fractionation (Wan et al.), proximity labeling (Gupta et al., Youn et al.), and RNA pulldown (Treiber et al.), to predict whether ~26 million
18
+ human protein pairs interact directly or indirectly.
19
+
20
+ ## Funding
21
+ NIH R00, NSF/BBSRC
22
+
23
+ ## Citation
24
+ Erin R. Claussen, Miles D Woodcock-Girard, Samantha N Fischer, Kevin Drew
25
+
26
+ ## References
27
+ Kevin Drew, Christian L. Müller , Richard Bonneau, Edward M. Marcotte (2017) Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. PLOS Computational Biology 13(10): e1005625. https://doi.org/10.1371/journal.pcbi.1005625
28
+ Samantha N. Fischer, Erin R Claussen, Savvas Kourtis, Sara Sdelci, Sandra Orchard, Henning Hermjakob, Georg Kustatscher, Kevin Drew hu.MAP3.0: Atlas of human protein complexes by integration of > 25,000 proteomic experiments. Molecular Systems Biology 1–33 (2025) doi:10.1038/s44320-025-00121-5.
29
+ Huttlin et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome Cell. 2021 May 27;184(11):3022-3040.e28. doi: 10.1016/j.cell.2021.04.011.
30
+ Huttlin et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017 May 25;545(7655):505-509. DOI: 10.1038/nature22366.
31
+ Treiber et al. A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis.. Mol Cell. 2017 Apr 20;66(2):270-284.e13. doi: 10.1016/j.molcel.2017.03.014.
32
+ Boldt et al. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun. 2016 May 13;7:11491. doi: 10.1038/ncomms11491.
33
+ Youn et al. High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. Mol Cell. 2018 Feb 1;69(3):517-532.e11. doi: 10.1016/j.molcel.2017.12.020.
34
+ Gupta et al. A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell. 2015 Dec 3;163(6):1484-99. doi: 10.1016/j.cell.2015.10.065.
35
+ Wan, Borgeson et al. Panorama of ancient metazoan macromolecular complexes. Nature. 2015 Sep 17;525(7569):339-44. doi: 10.1038/nature14877. Epub 2015 Sep 7.
36
+ Hein et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015 Oct 22;163(3):712-23. doi: 10.1016/j.cell.2015.09.053. Epub 2015 Oct 22.
37
+ Huttlin et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015 Jul 16;162(2):425-40. doi: 10.1016/j.cell.2015.06.043.
38
+ Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199.
39
+
40
+ ## Associated code
41
+
42
+ # Usage
43
+
44
+ ## Accessing and using the model
45
+ DirectContacts2 was constructed using [AutoGluon](https://auto.gluon.ai/stable/index.html) an auto-ML tool. The module [TabularPredictor](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html)
46
+ is used to is used train, test, and make predictions with the model.