sfisch commited on
Commit
676c000
·
verified ·
1 Parent(s): 2acca94

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -5
README.md CHANGED
@@ -1,10 +1,9 @@
1
  ---
2
  license: cc-by-4.0
3
  tags:
4
- - structural_biology
5
  - PPIs
6
  - mass_spectrometry
7
- - AlphaFold
8
  pretty_name: >-
9
  DirectContacts2: A network of direct physical protein interactions derived
10
  from high throughput mass spectrometry experiments
@@ -13,7 +12,7 @@ repo: https://github.com/KDrewLab/DirectContacts2_analysis.git
13
  # DirectContacts2: A network of direct physical protein interactions derived from high throughput mass spectrometry experiments
14
  Proteins carry out cellular functions by self-assembling into functional complexes, a process that depends on direct physical interactions
15
  between components. While tools like AlphaFold and RoseTTAFold have advanced structure prediction, they remain limited in scaling to the full
16
- human proteome. DirectContacts2 addresses this challenge by integrating diverse large-scale datasets, including AP/MS (BioPlex1–3, Boldt et al., Hein et al.),
17
  biochemical fractionation (Wan et al.), proximity labeling (Gupta et al., Youn et al.), and RNA pulldown (Treiber et al.), to predict whether ~26 million
18
  human protein pairs interact directly or indirectly.
19
 
@@ -40,9 +39,67 @@ human protein pairs interact directly or indirectly.
40
  Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199.
41
 
42
  ## Associated code
43
-
 
 
 
44
  # Usage
45
 
46
  ## Accessing and using the model
47
  DirectContacts2 was constructed using [AutoGluon](https://auto.gluon.ai/stable/index.html) an auto-ML tool. The module [TabularPredictor](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html)
48
- is used to is used train, test, and make predictions with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
  tags:
 
4
  - PPIs
5
  - mass_spectrometry
6
+ - biology
7
  pretty_name: >-
8
  DirectContacts2: A network of direct physical protein interactions derived
9
  from high throughput mass spectrometry experiments
 
12
  # DirectContacts2: A network of direct physical protein interactions derived from high throughput mass spectrometry experiments
13
  Proteins carry out cellular functions by self-assembling into functional complexes, a process that depends on direct physical interactions
14
  between components. While tools like AlphaFold and RoseTTAFold have advanced structure prediction, they remain limited in scaling to the full
15
+ human proteome. DirectContacts2 addresses this challenge by integrating diverse large-scale protrin interaction datasets, including AP/MS (BioPlex1–3, Boldt et al., Hein et al.),
16
  biochemical fractionation (Wan et al.), proximity labeling (Gupta et al., Youn et al.), and RNA pulldown (Treiber et al.), to predict whether ~26 million
17
  human protein pairs interact directly or indirectly.
18
 
 
39
  Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199.
40
 
41
  ## Associated code
42
+ Additional code examples can be found on our [GitHub](), including:
43
+ importing the [DirectContacts2]() model to make predictions, importing the
44
+ training and testing data, or using the full feature matrix.
45
+
46
  # Usage
47
 
48
  ## Accessing and using the model
49
  DirectContacts2 was constructed using [AutoGluon](https://auto.gluon.ai/stable/index.html) an auto-ML tool. The module [TabularPredictor](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html)
50
+ is used to is used train, test, and make predictions with the model.
51
+
52
+ This can be downloaded using the following:
53
+
54
+ $ pip install autogluon==0.4.0
55
+
56
+ Then it can be imported as:
57
+
58
+ >>> from autogluon.tabular import TabularPredictor
59
+ Note that to perform operations with our model the **0.4.0 version** must be used
60
+
61
+ The [DirectContacts2 model]() can be accessed through HuggingFace with [huggingface_hub](https://huggingface.co/docs/hub/index)
62
+
63
+ >>> from huggingface_hub import snapshot_download
64
+
65
+ >>> model_dir = snapshot_download(repo_id="sfisch/DirectContacts2_AutoGluon")
66
+
67
+ >>> predictor = TabularPredictor.load(f"{model_dir}/DirectContacts2_Autogluon_Model_20230405")
68
+
69
+ ## Using the training and testing data
70
+
71
+ Both the train and test feature matrices can be loaded using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
72
+
73
+ This can be done from the command-line using:
74
+
75
+ $ pip install datasets
76
+
77
+ When loading into Python use the following:
78
+
79
+ >>> from datasets import load_dataset
80
+ >>> dataset = load_dataset('sfisch/DirectContacts2')
81
+
82
+ Training and test feature matrices can then be accessed as separate objects:
83
+
84
+ >>> train = dataset["train"].to_pandas()
85
+ >>> test = dataset["test"].to_pandas()
86
+
87
+ Jupyter notebooks containing more in-depth examples of model training, testing, and generating predictions can be found on our [GitHub](https://github.com/KDrewLab/huMAP3.0_analysis/huMAP3.0_model_devel)
88
+
89
+ ## Accessing full feature matrix and all test/train interaction/complex files
90
+ All other files, such as the full feature matrix, can be accessed via Huggingface_hub.
91
+
92
+ >>> from huggingface_hub import hf_hub_download
93
+ >>> full_file = hf_hub_download(repo_id="sfisch/DirectContacts2", filename='full/direct_contacts2_full_feature_matrix_20220625.csv.gz', repo_type='dataset')
94
+
95
+ This just provides the file for download. Depending on your workflow, if you wish to use as a pandas dataframe for example:
96
+
97
+ >>> import pandas as pd
98
+ >>> full_featmat = pd.read_csv(full_file, compression="gzip")
99
+
100
+ The other complex/interaction files can be downloaded in the same manner. The files within the 'reference_interactions' directory
101
+ contain the complexes split from [Complex Portal](https://www.ebi.ac.uk/complexportal) into test and training sets. Within that directory you
102
+ will also find the pairwise protein interactions that were used as positive and negative interactions for both the test and training sets.
103
+
104
+ ## Dataset card authors
105
+ Samantha Fischer (sfisch6@uic.edu)