Upload MORFITT.py
Browse files- MORFITT.py +106 -0
MORFITT.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
ddd
|
11 |
+
"""
|
12 |
+
|
13 |
+
_DESCRIPTION = """\
|
14 |
+
ddd
|
15 |
+
"""
|
16 |
+
|
17 |
+
_HOMEPAGE = "ddd"
|
18 |
+
|
19 |
+
_URL = "https://huggingface.co/datasets/Dr-BERT/MORFITT/resolve/main/data.zip"
|
20 |
+
|
21 |
+
_LICENSE = "unknown"
|
22 |
+
|
23 |
+
_SPECIALITIES = ['microbiology', 'etiology', 'virology', 'physiology', 'immunology', 'parasitology', 'genetics', 'chemistry', 'veterinary', 'surgery', 'pharmacology', 'psychology']
|
24 |
+
|
25 |
+
class MORFITT(datasets.GeneratorBasedBuilder):
|
26 |
+
|
27 |
+
DEFAULT_CONFIG_NAME = "source"
|
28 |
+
|
29 |
+
BUILDER_CONFIGS = [
|
30 |
+
datasets.BuilderConfig(name="source", version="1.0.0", description="The MORFITT corpora"),
|
31 |
+
]
|
32 |
+
|
33 |
+
def _info(self):
|
34 |
+
|
35 |
+
features = datasets.Features(
|
36 |
+
{
|
37 |
+
"id": datasets.Value("string"),
|
38 |
+
"abstract": datasets.Value("string"),
|
39 |
+
"specialities": datasets.Sequence(
|
40 |
+
datasets.features.ClassLabel(names=_SPECIALITIES),
|
41 |
+
),
|
42 |
+
"specialities_one_hot": datasets.Sequence(
|
43 |
+
datasets.Value("float"),
|
44 |
+
),
|
45 |
+
}
|
46 |
+
)
|
47 |
+
|
48 |
+
return datasets.DatasetInfo(
|
49 |
+
description=_DESCRIPTION,
|
50 |
+
features=features,
|
51 |
+
supervised_keys=None,
|
52 |
+
homepage=_HOMEPAGE,
|
53 |
+
license=str(_LICENSE),
|
54 |
+
citation=_CITATION,
|
55 |
+
)
|
56 |
+
|
57 |
+
def _split_generators(self, dl_manager):
|
58 |
+
|
59 |
+
data_dir = dl_manager.download_and_extract(_URL).rstrip("/")
|
60 |
+
|
61 |
+
return [
|
62 |
+
datasets.SplitGenerator(
|
63 |
+
name=datasets.Split.TRAIN,
|
64 |
+
gen_kwargs={
|
65 |
+
"tsv_file": data_dir + "/train.tsv",
|
66 |
+
"split": "train",
|
67 |
+
},
|
68 |
+
),
|
69 |
+
datasets.SplitGenerator(
|
70 |
+
name=datasets.Split.VALIDATION,
|
71 |
+
gen_kwargs={
|
72 |
+
"tsv_file": data_dir + "/dev.tsv",
|
73 |
+
"split": "validation",
|
74 |
+
},
|
75 |
+
),
|
76 |
+
datasets.SplitGenerator(
|
77 |
+
name=datasets.Split.TEST,
|
78 |
+
gen_kwargs={
|
79 |
+
"tsv_file": data_dir + "/test.tsv",
|
80 |
+
"split": "test",
|
81 |
+
},
|
82 |
+
),
|
83 |
+
]
|
84 |
+
|
85 |
+
def _generate_examples(self, tsv_file, split):
|
86 |
+
|
87 |
+
# Load TSV file
|
88 |
+
df = pd.read_csv(tsv_file, sep="\t")
|
89 |
+
|
90 |
+
for index, e in df.iterrows():
|
91 |
+
|
92 |
+
specialities = e["specialities"].split("|")
|
93 |
+
|
94 |
+
# Empty one hot vector
|
95 |
+
one_hot = [0.0 for i in _SPECIALITIES]
|
96 |
+
|
97 |
+
# Fill up the one hot vector
|
98 |
+
for s in specialities:
|
99 |
+
one_hot[_SPECIALITIES.index(s)] = 1.0
|
100 |
+
|
101 |
+
yield e["identifier"], {
|
102 |
+
"id": e["identifier"],
|
103 |
+
"abstract": e["abstract"],
|
104 |
+
"specialities": specialities,
|
105 |
+
"specialities_one_hot": one_hot,
|
106 |
+
}
|