qanastek commited on
Commit
3776b81
1 Parent(s): 6f0d310

Upload 2 files

Browse files
Files changed (2) hide show
  1. DEFT2023.py +121 -0
  2. test_dataset.py +16 -0
DEFT2023.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """FrenchMedMCQA : A French Multiple-Choice Question Answering Corpus for Medical domain"""
16
+
17
+ import os
18
+ import json
19
+
20
+ import datasets
21
+
22
+ _DESCRIPTION = """\
23
+ FrenchMedMCQA
24
+ """
25
+
26
+ _HOMEPAGE = "https://frenchmedmcqa.github.io"
27
+
28
+ _LICENSE = "Apache License 2.0"
29
+
30
+ _CITATION = """\
31
+ @unpublished{labrak:hal-03824241,
32
+ TITLE = {{FrenchMedMCQA: A French Multiple-Choice Question Answering Dataset for Medical domain}},
33
+ AUTHOR = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Daille, Béatrice and Gourraud, Pierre-Antoine and Morin, Emmanuel and Rouvier, Mickael},
34
+ URL = {https://hal.archives-ouvertes.fr/hal-03824241},
35
+ NOTE = {working paper or preprint},
36
+ YEAR = {2022},
37
+ MONTH = Oct,
38
+ PDF = {https://hal.archives-ouvertes.fr/hal-03824241/file/LOUHI_2022___QA-3.pdf},
39
+ HAL_ID = {hal-03824241},
40
+ HAL_VERSION = {v1},
41
+ }
42
+ """
43
+
44
+ class DEFT2023(datasets.GeneratorBasedBuilder):
45
+ """FrenchMedMCQA : A French Multi-Choice Question Answering Corpus for Medical domain"""
46
+
47
+ VERSION = datasets.Version("1.0.0")
48
+
49
+ def _info(self):
50
+
51
+ features = datasets.Features(
52
+ {
53
+ "id": datasets.Value("string"),
54
+ "question": datasets.Value("string"),
55
+ "answer_a": datasets.Value("string"),
56
+ "answer_b": datasets.Value("string"),
57
+ "answer_c": datasets.Value("string"),
58
+ "answer_d": datasets.Value("string"),
59
+ "answer_e": datasets.Value("string"),
60
+ "correct_answers": datasets.Sequence(
61
+ datasets.features.ClassLabel(names=["a", "b", "c", "d", "e"]),
62
+ ),
63
+ "type": datasets.Value("string"),
64
+ "subject_name": datasets.Value("string"),
65
+ "number_correct_answers": datasets.features.ClassLabel(names=["1","2","3","4","5"]),
66
+ }
67
+ )
68
+
69
+ return datasets.DatasetInfo(
70
+ description=_DESCRIPTION,
71
+ features=features,
72
+ homepage=_HOMEPAGE,
73
+ license=_LICENSE,
74
+ citation=_CITATION,
75
+ )
76
+
77
+ def _split_generators(self, dl_manager):
78
+ """Returns SplitGenerators."""
79
+
80
+ return [
81
+ datasets.SplitGenerator(
82
+ name=datasets.Split.TRAIN,
83
+ gen_kwargs={
84
+ "filepath": os.path.join("../json/", "train.json"),
85
+ },
86
+ ),
87
+ datasets.SplitGenerator(
88
+ name=datasets.Split.VALIDATION,
89
+ gen_kwargs={
90
+ "filepath": os.path.join("../json/", "dev.json"),
91
+ },
92
+ ),
93
+ datasets.SplitGenerator(
94
+ name=datasets.Split.TEST,
95
+ gen_kwargs={
96
+ "filepath": os.path.join("../json/", "test.json"),
97
+ },
98
+ ),
99
+ ]
100
+
101
+ def _generate_examples(self, filepath):
102
+
103
+ with open(filepath, encoding="utf-8") as f:
104
+
105
+ data = json.load(f)
106
+
107
+ for key, d in enumerate(data):
108
+
109
+ yield key, {
110
+ "id": d["id"],
111
+ "question": d["question"],
112
+ "answer_a": d["answers"]["a"],
113
+ "answer_b": d["answers"]["b"],
114
+ "answer_c": d["answers"]["c"],
115
+ "answer_d": d["answers"]["d"],
116
+ "answer_e": d["answers"]["e"],
117
+ "correct_answers": d["correct_answers"],
118
+ "number_correct_answers": str(len(d["correct_answers"])),
119
+ "type": d["type"],
120
+ "subject_name": d["subject_name"],
121
+ }
test_dataset.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+
3
+ dataset = load_dataset("./DEFT2023.py")
4
+
5
+ print("#"*50)
6
+ print(dataset)
7
+ print("#"*50)
8
+ print(dataset["train"])
9
+ print("#"*50)
10
+ print(dataset["train"][0])
11
+ print("#"*50)
12
+
13
+ print(dataset["train"].features["number_correct_answers"].names)
14
+
15
+ label_list = dataset["train"].features["correct_answers"].feature.names
16
+ print(label_list)