Update DEFT2021.py
Browse files- DEFT2021.py +119 -107
DEFT2021.py
CHANGED
@@ -1,7 +1,12 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import json
|
3 |
import random
|
4 |
from pathlib import Path
|
|
|
|
|
|
|
5 |
|
6 |
import datasets
|
7 |
import numpy as np
|
@@ -46,37 +51,37 @@ class DEFT2021(datasets.GeneratorBasedBuilder):
|
|
46 |
]
|
47 |
|
48 |
def _info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
65 |
-
|
66 |
-
elif self.config.name.find("ner") != -1:
|
67 |
-
|
68 |
-
features = datasets.Features(
|
69 |
-
{
|
70 |
-
"id": datasets.Value("string"),
|
71 |
-
"document_id": datasets.Value("string"),
|
72 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
73 |
-
"ner_tags": datasets.Sequence(
|
74 |
-
datasets.features.ClassLabel(
|
75 |
-
names = ['O', 'B-anatomie', 'I-anatomie', 'B-date', 'I-date', 'B-dose', 'I-dose', 'B-duree', 'I-duree', 'B-examen', 'I-examen', 'B-frequence', 'I-frequence', 'B-mode', 'I-mode', 'B-moment', 'I-moment', 'B-pathologie', 'I-pathologie', 'B-sosy', 'I-sosy', 'B-substance', 'I-substance', 'B-traitement', 'I-traitement', 'B-valeur', 'I-valeur'],
|
76 |
-
)
|
77 |
-
),
|
78 |
-
}
|
79 |
-
),
|
80 |
|
81 |
return datasets.DatasetInfo(
|
82 |
description=_DESCRIPTION,
|
@@ -492,84 +497,91 @@ class DEFT2021(datasets.GeneratorBasedBuilder):
|
|
492 |
return final_json
|
493 |
|
494 |
def _generate_examples(self, data_dir, split):
|
|
|
|
|
495 |
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
|
|
|
|
|
|
|
|
|
|
573 |
|
574 |
elif self.config.name.find("ner") != -1:
|
575 |
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
+
import ast
|
4 |
import json
|
5 |
import random
|
6 |
from pathlib import Path
|
7 |
+
from itertools import product
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from typing import Dict, List, Tuple
|
10 |
|
11 |
import datasets
|
12 |
import numpy as np
|
|
|
51 |
]
|
52 |
|
53 |
def _info(self):
|
54 |
+
|
55 |
+
if self.config.name.find("cls") != -1:
|
56 |
+
|
57 |
+
features = datasets.Features(
|
58 |
+
{
|
59 |
+
"id": datasets.Value("string"),
|
60 |
+
"document_id": datasets.Value("string"),
|
61 |
+
"text": datasets.Value("string"),
|
62 |
+
"specialities": datasets.Sequence(
|
63 |
+
datasets.features.ClassLabel(names=_SPECIALITIES),
|
64 |
+
),
|
65 |
+
"specialities_one_hot": datasets.Sequence(
|
66 |
+
datasets.Value("float"),
|
67 |
+
),
|
68 |
+
}
|
69 |
+
)
|
70 |
|
71 |
+
elif self.config.name.find("ner") != -1:
|
72 |
+
|
73 |
+
features = datasets.Features(
|
74 |
+
{
|
75 |
+
"id": datasets.Value("string"),
|
76 |
+
"document_id": datasets.Value("string"),
|
77 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
78 |
+
"ner_tags": datasets.Sequence(
|
79 |
+
datasets.features.ClassLabel(
|
80 |
+
names = ['O', 'B-anatomie', 'I-anatomie', 'B-date', 'I-date', 'B-dose', 'I-dose', 'B-duree', 'I-duree', 'B-examen', 'I-examen', 'B-frequence', 'I-frequence', 'B-mode', 'I-mode', 'B-moment', 'I-moment', 'B-pathologie', 'I-pathologie', 'B-sosy', 'I-sosy', 'B-substance', 'I-substance', 'B-traitement', 'I-traitement', 'B-valeur', 'I-valeur'],
|
81 |
+
)
|
82 |
+
),
|
83 |
+
}
|
84 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
return datasets.DatasetInfo(
|
87 |
description=_DESCRIPTION,
|
|
|
497 |
return final_json
|
498 |
|
499 |
def _generate_examples(self, data_dir, split):
|
500 |
+
|
501 |
+
if self.config.name.find("cls") != -1:
|
502 |
|
503 |
+
all_res = {}
|
504 |
+
|
505 |
+
key = 0
|
506 |
+
|
507 |
+
if split == 'train' or split == 'validation':
|
508 |
+
split_eval = 'train'
|
509 |
+
else:
|
510 |
+
split_eval = 'test'
|
511 |
+
|
512 |
+
path_labels = Path(data_dir) / 'evaluations' / f"ref-{split_eval}-deft2021.txt"
|
513 |
+
|
514 |
+
with open(os.path.join(data_dir, 'distribution-corpus.txt')) as f_dist:
|
515 |
+
|
516 |
+
doc_specialities_ = {}
|
517 |
+
|
518 |
+
with open(path_labels) as f_spec:
|
519 |
+
|
520 |
+
doc_specialities = [line.strip() for line in f_spec.readlines()]
|
521 |
+
|
522 |
+
for raw in doc_specialities:
|
523 |
+
|
524 |
+
raw_split = raw.split('\t')
|
525 |
+
|
526 |
+
if len(raw_split) == 3 and raw_split[0] in doc_specialities_:
|
527 |
+
doc_specialities_[raw_split[0]].append(raw_split[1])
|
528 |
+
|
529 |
+
elif len(raw_split) == 3 and raw_split[0] not in doc_specialities_:
|
530 |
+
doc_specialities_[raw_split[0]] = [raw_split[1]]
|
531 |
+
|
532 |
+
ann_path = Path(data_dir) / "DEFT-cas-cliniques"
|
533 |
+
|
534 |
+
for guid, txt_file in enumerate(sorted(ann_path.glob("*.txt"))):
|
535 |
+
|
536 |
+
ann_file = txt_file.with_suffix("").name.split('.')[0]+'.ann'
|
537 |
+
|
538 |
+
if ann_file in doc_specialities_:
|
539 |
+
|
540 |
+
res = {}
|
541 |
+
res['document_id'] = txt_file.with_suffix("").name
|
542 |
+
with txt_file.open() as f:
|
543 |
+
res["text"] = f.read()
|
544 |
+
|
545 |
+
specialities = doc_specialities_[ann_file]
|
546 |
+
|
547 |
+
# Empty one hot vector
|
548 |
+
one_hot = [0.0 for i in _SPECIALITIES]
|
549 |
+
|
550 |
+
# Fill up the one hot vector
|
551 |
+
for s in specialities:
|
552 |
+
one_hot[_SPECIALITIES.index(s)] = 1.0
|
553 |
+
|
554 |
+
all_res[res['document_id']] = {
|
555 |
+
"id": str(key),
|
556 |
+
"document_id": res['document_id'],
|
557 |
+
"text": res["text"],
|
558 |
+
"specialities": specialities,
|
559 |
+
"specialities_one_hot": one_hot,
|
560 |
+
}
|
561 |
+
|
562 |
+
key += 1
|
563 |
+
|
564 |
+
distribution = [line.strip() for line in f_dist.readlines()]
|
565 |
+
|
566 |
+
random.seed(4)
|
567 |
+
train = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'train 2021']
|
568 |
+
random.shuffle(train)
|
569 |
+
random.shuffle(train)
|
570 |
+
random.shuffle(train)
|
571 |
+
train, validation = np.split(train, [int(len(train)*0.7096)])
|
572 |
+
|
573 |
+
test = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'test 2021']
|
574 |
+
|
575 |
+
if split == "train":
|
576 |
+
allowed_ids = list(train)
|
577 |
+
elif split == "test":
|
578 |
+
allowed_ids = list(test)
|
579 |
+
elif split == "validation":
|
580 |
+
allowed_ids = list(validation)
|
581 |
+
|
582 |
+
for r in all_res.values():
|
583 |
+
if r["document_id"]+'.txt' in allowed_ids:
|
584 |
+
yield r["id"], r
|
585 |
|
586 |
elif self.config.name.find("ner") != -1:
|
587 |
|