DolphinAI commited on
Commit
85e00b0
ยท
verified ยท
1 Parent(s): 6b74ff0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -1
README.md CHANGED
@@ -8,4 +8,110 @@ tags:
8
  - medical
9
  size_categories:
10
  - 1K<n<10K
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - medical
9
  size_categories:
10
  - 1K<n<10K
11
+ ---
12
+
13
+ # U2-BENCH: Ultrasound Understanding Benchmark
14
+
15
+ **U2-BENCH** is the **first large-scale benchmark for evaluating Large Vision-Language Models (LVLMs) on ultrasound imaging understanding**. It provides a diverse, multi-task dataset curated from **40 licensed sources**, covering **15 anatomical regions** and **8 clinically inspired tasks** across classification, detection, regression, and text generation.
16
+
17
+ ---
18
+
19
+ ## ๐Ÿ“‚ Dataset Structure
20
+
21
+ The dataset is organized into **8 folders**, each corresponding to one benchmark task:
22
+
23
+ - `caption_generation/`
24
+ - `clinical_value_estimation/`
25
+ - `disease_diagnosis/`
26
+ - `keypoint_detection/`
27
+ - `lesion_localisation/`
28
+ - `organ_detection/`
29
+ - `report_generation/`
30
+ - `view_recognition_and_assessment/`
31
+
32
+ Each folder contains `.tsv` files with task-specific annotations. A shared file, [`an_explanation_of_the_columns.tsv`](./an_explanation_of_the_columns.tsv), maps each column to its meaning.
33
+
34
+ ---
35
+
36
+ ## ๐Ÿ“„ Data Format
37
+
38
+ The dataset is provided as `.tsv` files, where:
39
+
40
+ - `img_data` contains a **base64-encoded image** (typically a 2D frame from an ultrasound video).
41
+ - Each row corresponds to a **single sample**.
42
+ - Columns include task-specific fields such as:
43
+ - `dataset_name`, `anatomy_location`, `classification_task`
44
+ - `caption`, `report`, `class_label`, `measurement`, `gt_bbox`, `keypoints`, etc.
45
+
46
+ A full explanation is provided in [`an_explanation_of_the_columns.tsv`](./an_explanation_of_the_columns.tsv).
47
+
48
+ ---
49
+
50
+ ## ๐Ÿ”ฌ Tasks
51
+
52
+ U2-BENCH includes 8 core tasks:
53
+
54
+ | Capability | Task Name | Description |
55
+ |----------------|------------------------------|-------------------------------------------------|
56
+ | Classification | Disease Diagnosis (DD) | Predict clinical diagnosis from ultrasound |
57
+ | Classification | View Recognition (VRA) | Classify standard views in sonography |
58
+ | Detection | Lesion Localization (LL) | Locate lesions with spatial classification |
59
+ | Detection | Organ Detection (OD) | Identify presence of anatomical structures |
60
+ | Detection | Keypoint Detection (KD) | Predict anatomical landmarks (e.g. biometry) |
61
+ | Regression | Clinical Value Estimation | Estimate scalar metrics (e.g., fat %, EF) |
62
+ | Generation | Report Generation | Produce structured clinical ultrasound reports |
63
+ | Generation | Caption Generation | Generate brief anatomical image descriptions |
64
+
65
+ ---
66
+
67
+ ## ๐Ÿ“Š Dataset Statistics
68
+
69
+ - **Total samples**: 7,241
70
+ - **Anatomies**: 15 (e.g., thyroid, fetus, liver, breast, heart, lung)
71
+ - **Application scenarios**: 50 across tasks
72
+ - **Multi-task support**: Some samples contain multiple labels (e.g., classification + regression)
73
+
74
+ ---
75
+
76
+ ## ๐Ÿ›ก๏ธ Ethics, License & Use
77
+
78
+ - The dataset is distributed under the **Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)** license.
79
+ - For **non-commercial research and evaluation only**.
80
+ - Data is derived from **licensed and publicly available ultrasound datasets**.
81
+ - All images are de-identified, and annotations were manually validated.
82
+ - **Do not use** this dataset for diagnostic or clinical deployment without regulatory approval.
83
+
84
+ ---
85
+
86
+ ## ๐Ÿ“ฆ Loading from Hugging Face
87
+
88
+ You can load the dataset using ๐Ÿค— Datasets:
89
+
90
+ ```python
91
+ from datasets import load_dataset
92
+
93
+ dataset = load_dataset("DolphinAI/u2-bench", split="train")
94
+ ```
95
+
96
+ ---
97
+
98
+ ## ๐Ÿ“š Citation
99
+
100
+ If you use this benchmark in your research, please cite:
101
+
102
+ ```bibtex
103
+ @article{le2025u2bench,
104
+ title={U2-BENCH: Benchmarking Large Vision-Language Models on Ultrasound Understanding},
105
+ author={Le, Anjie and Liu, Henan and others},
106
+ journal={Under Review},
107
+
108
+ year={2025}
109
+ }
110
+ ```
111
+
112
+ ---
113
+
114
+ ## ๐Ÿ”ง Contributions
115
+
116
+ We welcome community contributions and evaluation scripts.
117
+ Please open a pull request or contact Dolphin AI for collaboration.