Delta-Vector commited on
Commit
a224ed8
·
verified ·
1 Parent(s): 7bcdac6

Upload 10 files

Browse files
Files changed (10) hide show
  1. Holland4bv1.yml +88 -0
  2. InterLM.yaml +85 -0
  3. Qwen7B.yaml +79 -0
  4. customgemma2.py +154 -0
  5. gemma2FFT.yaml +74 -0
  6. gemmy.yaml +69 -0
  7. magstral.yaml +63 -0
  8. mergeddatasets4b.yml +71 -0
  9. sdprompter.yaml +92 -0
  10. tinygemma.yaml +68 -0
Holland4bv1.yml ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: false
7
+ strict: false
8
+
9
+ datasets:
10
+ - path: NewEden/Gryphe-3.5-16k-Subset
11
+ type: sharegpt
12
+ conversation: chatml
13
+ - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
14
+ type: sharegpt
15
+ conversation: chatml
16
+ - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
17
+ type: sharegpt
18
+ conversation: chatml
19
+ - path: PJMixers/lodrick-the-lafted_OpusStories-ShareGPT
20
+ type: sharegpt
21
+ conversation: chatml
22
+
23
+ chat_template: chatml
24
+
25
+ val_set_size: 0.01
26
+ output_dir: ./outputs/out
27
+
28
+ adapter:
29
+ lora_r:
30
+ lora_alpha:
31
+ lora_dropout:
32
+ lora_target_linear:
33
+
34
+ sequence_len: 16384
35
+ # sequence_len: 32768
36
+ sample_packing: true
37
+ eval_sample_packing: false
38
+ pad_to_sequence_len: true
39
+
40
+ plugins:
41
+ - axolotl.integrations.liger.LigerPlugin
42
+ liger_rope: true
43
+ liger_rms_norm: true
44
+ liger_swiglu: true
45
+ liger_fused_linear_cross_entropy: true
46
+
47
+ wandb_project: Ohashi4b
48
+ wandb_entity:
49
+ wandb_watch:
50
+ wandb_name: Ohashi4b
51
+ wandb_log_model:
52
+
53
+ gradient_accumulation_steps: 32
54
+ micro_batch_size: 1
55
+ num_epochs: 2
56
+ optimizer: adamw_bnb_8bit
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.00002
59
+ weight_decay: 0.05
60
+
61
+ train_on_inputs: false
62
+ group_by_length: false
63
+ bf16: auto
64
+ fp16:
65
+ tf32: true
66
+
67
+ gradient_checkpointing: true
68
+ early_stopping_patience:
69
+ resume_from_checkpoint:
70
+ local_rank:
71
+ logging_steps: 1
72
+ xformers_attention:
73
+ flash_attention: true
74
+
75
+ warmup_ratio: 0.1
76
+ evals_per_epoch: 4
77
+ eval_table_size:
78
+ eval_max_new_tokens: 128
79
+ saves_per_epoch: 1
80
+
81
+ debug:
82
+ deepspeed:
83
+ fsdp:
84
+ fsdp_config:
85
+
86
+ special_tokens:
87
+ pad_token: <|finetune_right_pad_id|>
88
+
InterLM.yaml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: internlm/internlm2_5-1_8b
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ trust_remote_code: true
6
+
7
+ load_in_8bit: false
8
+ load_in_4bit: false
9
+ strict: false
10
+
11
+ datasets:
12
+ - path: lodrick-the-lafted/NopmWritingStruct
13
+ type: sharegpt
14
+ conversation: chatml
15
+ - path: NewEden/Kalo-Opus-Instruct-25K-Refusal-killed
16
+ type: sharegpt
17
+ conversation: chatml
18
+ - path: NewEDen/Claude-Data-Anon-Killed
19
+ type: sharegpt
20
+ conversation: chatml
21
+ - path: MangoHQ/Gryphe-3.5-16k-Subset
22
+ type: sharegpt
23
+ conversation: chatml
24
+ - path: PJMixers/lodrick-the-lafted_OpusStories-ShareGPT
25
+ type: sharegpt
26
+ conversation: chatml
27
+ - path: MangoHQ/opus-sharegpt2
28
+ type: sharegpt
29
+ conversation: chatml
30
+ - path: MangoHQ/opus-sharegpt1
31
+ type: sharegpt
32
+ conversation: chatml
33
+
34
+ chat_template: chatml
35
+ dataset_prepared_path:
36
+ val_set_size: 0.05
37
+ output_dir: ./outputs/out
38
+ sequence_len: 4096
39
+ sample_packing: true
40
+ eval_sample_packing: true
41
+ pad_to_sequence_len: true
42
+
43
+ adapter:
44
+ lora_model_dir:
45
+ lora_r:
46
+ lora_alpha:
47
+ lora_dropout:
48
+ lora_target_linear: true
49
+ lora_fan_in_fan_out:
50
+
51
+ wandb_project: Aleah-1.8B
52
+ wandb_entity:
53
+ wandb_watch:
54
+ wandb_name: Aleah1.8BV2
55
+ wandb_log_model:
56
+
57
+ gradient_accumulation_steps: 64
58
+ micro_batch_size: 1
59
+ num_epochs: 2
60
+ optimizer: adamw_torch
61
+ lr_scheduler: cosine
62
+ learning_rate: 0.00001
63
+
64
+ train_on_inputs: false
65
+ group_by_length: false
66
+ bf16: auto
67
+ fp16:
68
+ tf32: true
69
+
70
+ gradient_checkpointing: true
71
+ gradient_checkpointing_kwargs:
72
+ use_reentrant: false
73
+ early_stopping_patience:
74
+ resume_from_checkpoint:
75
+ local_rank:
76
+ logging_steps: 1
77
+ xformers_attention:
78
+ flash_attention: true
79
+
80
+ warmup_ratio:
81
+ evals_per_epoch: 4
82
+ saves_per_epoch: 1
83
+ debug:
84
+ weight_decay: 0.0
85
+ special_tokens:
Qwen7B.yaml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: Qwen/Qwen2-7B
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ trust_remote_code: true
6
+
7
+ load_in_8bit: false
8
+ load_in_4bit: false
9
+ strict: false
10
+
11
+ datasets:
12
+ - path: lodrick-the-lafted/NopmWritingStruct
13
+ type: sharegpt
14
+ conversation: chatml
15
+ - path: kalomaze/Opus_Instruct_25k
16
+ type: sharegpt
17
+ conversation: chatml
18
+ - path: kalomaze/Opus_Instruct_3k
19
+ type: sharegpt
20
+ conversation: chatml
21
+ - path: NewEden/Claude-Data-Anon-Killed
22
+ type: sharegpt
23
+ conversation: chatml
24
+ - path: PJMixers/lodrick-the-lafted_OpusStories-ShareGPT
25
+ type: sharegpt
26
+ conversation: chatml
27
+
28
+ chat_template: chatml
29
+ dataset_prepared_path:
30
+ val_set_size: 0.05
31
+ output_dir: ./outputs/out
32
+ sequence_len: 32768
33
+ sample_packing: true
34
+ eval_sample_packing: true
35
+ pad_to_sequence_len: true
36
+
37
+ adapter:
38
+ lora_model_dir:
39
+ lora_r:
40
+ lora_alpha:
41
+ lora_dropout:
42
+ lora_target_linear: true
43
+ lora_fan_in_fan_out:
44
+
45
+ wandb_project: Magnum-9b
46
+ wandb_entity:
47
+ wandb_watch:
48
+ wandb_name: 123-9b
49
+ wandb_log_model:
50
+
51
+ gradient_accumulation_steps: 64
52
+ micro_batch_size: 1
53
+ num_epochs: 2
54
+ optimizer: adamw_torch
55
+ lr_scheduler: cosine
56
+ learning_rate: 0.00002
57
+
58
+ train_on_inputs: false
59
+ group_by_length: false
60
+ bf16: auto
61
+ fp16:
62
+ tf32: true
63
+
64
+ gradient_checkpointing: true
65
+ gradient_checkpointing_kwargs:
66
+ use_reentrant: false
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+
74
+ warmup_ratio: 0.05
75
+ evals_per_epoch: 4
76
+ saves_per_epoch: 1
77
+ debug:
78
+ weight_decay: 0.0
79
+ special_tokens:
customgemma2.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module containing the CustomGemma2PromptTokenizingStrategy class"""
2
+
3
+ # Import necessary modules and functions
4
+ import copy
5
+ import logging
6
+ from collections import defaultdict
7
+ from typing import Generator, List, Tuple
8
+
9
+ # Import from axolotl package
10
+ from axolotl.prompt_tokenizers import (
11
+ PromptTokenizingStrategy,
12
+ parse_tokenized_to_result,
13
+ tokenize_prompt_default,
14
+ )
15
+
16
+ # Set up logging
17
+ LOG = logging.getLogger("axolotl")
18
+
19
+ # Define a constant token ID to ignore
20
+ IGNORE_TOKEN_ID = -100
21
+
22
+
23
+ class CustomGemma2PromptTokenizingStrategy(PromptTokenizingStrategy):
24
+ """
25
+ Tokenizing strategy for CustomGemma2.
26
+ """
27
+
28
+ def __init__(self, prompter, tokenizer, *args, **kwargs):
29
+ # Call the superclass' constructor
30
+ super().__init__(prompter, tokenizer, *args, **kwargs)
31
+
32
+ def tokenize_prompt(self, prompt):
33
+ # Tokenize the prompt based on its conversations
34
+ result, current_len = tokenize_prompt_default()
35
+
36
+ # We don't want to remove the BOS token for the first turn
37
+ strip_bos = False
38
+
39
+ # Sometimes it gets named 'conversations' and other times 'conversation'
40
+ if "conversations" in prompt:
41
+ conversation_name = "conversations"
42
+ elif "conversation" in prompt:
43
+ conversation_name = "conversation"
44
+ else:
45
+ LOG.warning(f"sample does not contain 'conversations' or 'conversation'")
46
+ exit()
47
+
48
+ # Iterate over each conversation turn in the prompt
49
+ num_turns = len(prompt[conversation_name])
50
+ for i, turn in enumerate(prompt[conversation_name]):
51
+ # Strip BOS token and add a new line to the beginning if it's not the first turn
52
+ if i == 0:
53
+ strip_bos = False
54
+ add_new_line = ""
55
+ else:
56
+ strip_bos = True
57
+ add_new_line = "\n"
58
+
59
+ # Check if this is the last turn, so we know to add the EOS token
60
+ if i == num_turns - 1:
61
+ end_of_text = True
62
+ else:
63
+ end_of_text = False
64
+
65
+ # Get correct roles and messages
66
+ sharegpt_from, sharegpt_value = turn["from"].strip(), turn["value"].strip()
67
+ if sharegpt_from == "system":
68
+ role_name = "system"
69
+ elif sharegpt_from == "human":
70
+ role_name = "user"
71
+ elif sharegpt_from == "human-chat":
72
+ role_name = "user"
73
+ sharegpt_value = f"{turn['name'].strip()}: {sharegpt_value}"
74
+ elif sharegpt_from == "gpt":
75
+ role_name = "model"
76
+ elif sharegpt_from == "gpt-chat":
77
+ role_name = "model"
78
+ sharegpt_value = f"{turn['name'].strip()}: {sharegpt_value}"
79
+ else:
80
+ LOG.warning(f"'from' contains an unhandled string: {sharegpt_from}")
81
+ exit()
82
+
83
+ # Get tokens which will be masked out if using train_on_inputs: false
84
+ prefix = self._tokenize(
85
+ f"{add_new_line}<start_of_turn>{role_name}\n",
86
+ add_eos_token=False,
87
+ strip_bos_token=strip_bos,
88
+ )
89
+
90
+ # Get entire tokenized turn
91
+ res = self._tokenize(
92
+ f"{add_new_line}<start_of_turn>{role_name}\n"
93
+ f"{sharegpt_value.strip()}<end_of_turn>",
94
+ add_eos_token=end_of_text,
95
+ strip_bos_token=strip_bos,
96
+ )
97
+
98
+ # Handle masked user turn
99
+ if (
100
+ self.train_on_inputs is False
101
+ and (
102
+ sharegpt_from == "system"
103
+ or sharegpt_from == "human"
104
+ or sharegpt_from == "human-chat"
105
+ )
106
+ ):
107
+ labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
108
+ # Handle partially masked model turn
109
+ elif (
110
+ self.train_on_inputs is False
111
+ and (
112
+ sharegpt_from == "gpt"
113
+ or sharegpt_from == "gpt-chat"
114
+ )
115
+ ):
116
+ labels = (
117
+ [IGNORE_TOKEN_ID] * len(prefix["input_ids"]) # Mask the prefix
118
+ + [*copy.deepcopy(res["input_ids"])][len(prefix["input_ids"]):]
119
+ )
120
+ # Handle unmasked turn
121
+ else:
122
+ labels = res["input_ids"]
123
+
124
+ # Parse tokenized result and update current length
125
+ result, current_len = parse_tokenized_to_result(
126
+ result,
127
+ current_len,
128
+ res,
129
+ labels,
130
+ pad_token_id=self.tokenizer.pad_token_id,
131
+ )
132
+
133
+ return result
134
+
135
+
136
+ # TODO: Remove this as it doesn't get used
137
+ class CustomGemma2Prompter:
138
+ """
139
+ Prompter for CustomGemma2.
140
+ """
141
+
142
+ def __init__(self, *args, **kwargs):
143
+ # Constructor does nothing
144
+ pass
145
+
146
+
147
+ # Function to load the CustomGemma2PromptTokenizingStrategy
148
+ def load(tokenizer, cfg):
149
+ return CustomGemma2PromptTokenizingStrategy(
150
+ CustomGemma2Prompter(), # TODO: Remove this as it doesn't get used
151
+ tokenizer,
152
+ cfg.train_on_inputs,
153
+ cfg.sequence_len
154
+ )
gemma2FFT.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: google/gemma-2-9b
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: false
7
+ strict: false
8
+
9
+ chat_template: gemma
10
+ train_on_eos: true
11
+ datasets:
12
+ - path: NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered
13
+ type: chat_template
14
+ chat_template: gemma
15
+ drop_system_message: true
16
+ - path: NewEden/Gryphe-3.5-16k-Subset
17
+ type: chat_template
18
+ chat_template: gemma
19
+ drop_system_message: true
20
+ - path: Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned
21
+ type: chat_template
22
+ chat_template: gemma
23
+ drop_system_message: true
24
+
25
+ val_set_size: 0.02
26
+ output_dir: ./outputs/out
27
+
28
+ sequence_len: 8192
29
+ sample_packing: true
30
+ eval_sample_packing: false
31
+ pad_to_sequence_len: true
32
+
33
+ wandb_project: Magnum9B
34
+ wandb_entity:
35
+ wandb_watch:
36
+ wandb_name: Magnum9B
37
+ wandb_log_model:
38
+
39
+
40
+ gradient_accumulation_steps: 12
41
+ micro_batch_size: 1
42
+ num_epochs: 1
43
+ #optimizer: adamw_bnb_8bit
44
+ optimizer: paged_adamw_8bit
45
+ lr_scheduler: cosine
46
+ #learning_rate: 1e-5
47
+ learning_rate: 8e-6
48
+
49
+ train_on_inputs: false
50
+ group_by_length: false
51
+ bf16: true
52
+ fp16: false
53
+ tf32: true
54
+
55
+ gradient_checkpointing: true
56
+ early_stopping_patience:
57
+ resume_from_checkpoint:
58
+ local_rank:
59
+ logging_steps: 1
60
+ xformers_attention:
61
+ flash_attention: true
62
+ deepspeed: ./deepspeed_configs/zero3_bf16.json
63
+
64
+ warmup_steps: 15
65
+ evals_per_epoch: 0
66
+ eval_table_size:
67
+ eval_max_new_tokens: 128
68
+ saves_per_epoch: 5
69
+ save_total_limit: 3
70
+ debug:
71
+ weight_decay: 0.0
72
+ fsdp:
73
+ fsdp_config:
74
+ special_tokens:
gemmy.yaml ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: IntervitensInc/gemma-2-9b-chatml
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: true
7
+ strict: false
8
+
9
+ # huggingface repo
10
+ datasets:
11
+ - path: NewEden/Kalo-Opus-Instruct-25K-Refusal-killed
12
+ type: chatml
13
+ - path: NewEden/Gryphe-3.5-16k-Subset
14
+ type: chatml
15
+
16
+ val_set_size: 0.05
17
+ output_dir: ./outputs/out
18
+
19
+ adapter: lora
20
+ peft_use_rslora: true
21
+ lora_r: 32
22
+ lora_alpha: 32
23
+ lora_dropout: 0.05
24
+ lora_target_linear: true
25
+
26
+ sequence_len: 8192
27
+ sample_packing: true
28
+ eval_sample_packing: false
29
+ pad_to_sequence_len: true
30
+
31
+ wandb_project: magnum 9b
32
+ wandb_entity:
33
+ wandb_watch:
34
+ wandb_name: magnum 9b inst
35
+ wandb_log_model:
36
+
37
+
38
+ gradient_accumulation_steps: 32
39
+ micro_batch_size: 1
40
+ num_epochs: 2
41
+ optimizer: adamw_bnb_8bit
42
+ lr_scheduler: cosine
43
+ learning_rate: 0.00002
44
+
45
+ train_on_inputs: false
46
+ group_by_length: false
47
+ bf16: auto
48
+ fp16:
49
+ tf32: true
50
+
51
+ gradient_checkpointing: true
52
+ early_stopping_patience:
53
+ resume_from_checkpoint:
54
+ local_rank:
55
+ logging_steps: 1
56
+ xformers_attention:
57
+ flash_attention: true
58
+
59
+ warmup_ratio: 0.1
60
+ evals_per_epoch: 4
61
+ eval_table_size:
62
+ eval_max_new_tokens: 128
63
+ saves_per_epoch: 1
64
+ debug:
65
+ deepspeed: zero2.json
66
+ weight_decay: 0.0
67
+ fsdp:
68
+ fsdp_config:
69
+ special_tokens:
magstral.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: mistralai/Mistral-7B-v0.3
2
+ model_type: MistralForCausalLM
3
+ tokenizer_type: LlamaTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: false
7
+ strict: false
8
+
9
+ datasets:
10
+ - path: MangoHQ/Kalo-Opus-Instruct-22k-Refusal-Murdered
11
+ type: sharegpt
12
+ - path: MangoHQ/Gryphe-3.5-16k-Subset
13
+ type: sharegpt
14
+ - path: Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned
15
+ type: sharegpt
16
+
17
+ dataset_prepared_path:
18
+ val_set_size: 0.05
19
+ output_dir: ./outputs/out
20
+
21
+ sequence_len: 16384
22
+ sample_packing: true
23
+ pad_to_sequence_len: true
24
+ eval_sample_packing: false
25
+
26
+ wandb_project: Magstral 7B
27
+ wandb_entity:
28
+ wandb_watch:
29
+ wandb_name: Magstral 7B
30
+ wandb_log_model:
31
+
32
+ gradient_accumulation_steps: 4
33
+ micro_batch_size: 2
34
+ num_epochs: 4
35
+ optimizer: adamw_bnb_8bit
36
+ lr_scheduler: cosine
37
+ learning_rate: 0.000005
38
+
39
+ train_on_inputs: false
40
+ group_by_length: false
41
+ bf16: auto
42
+ fp16:
43
+ tf32: false
44
+
45
+ gradient_checkpointing: true
46
+ early_stopping_patience:
47
+ resume_from_checkpoint:
48
+ local_rank:
49
+ logging_steps: 1
50
+ xformers_attention:
51
+ flash_attention: true
52
+
53
+ warmup_steps: 10
54
+ evals_per_epoch: 4
55
+ eval_table_size:
56
+ eval_max_new_tokens: 128
57
+ saves_per_epoch: 1
58
+ debug:
59
+ deepspeed:
60
+ weight_decay: 0.0
61
+ fsdp:
62
+ fsdp_config:
63
+ special_tokens:
mergeddatasets4b.yml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: false
7
+ strict: false
8
+
9
+ datasets:
10
+ - path: Edens-Gate/jellymazeisacuteandfunnybear
11
+ type: sharegpt
12
+ conversation: chatml
13
+
14
+ chat_template: chatml
15
+
16
+ val_set_size: 0.01
17
+ output_dir: ./outputs/out
18
+
19
+ adapter:
20
+ lora_r:
21
+ lora_alpha:
22
+ lora_dropout:
23
+ lora_target_linear:
24
+
25
+ sequence_len: 16384
26
+ # sequence_len: 32768
27
+ sample_packing: true
28
+ eval_sample_packing: false
29
+ pad_to_sequence_len: true
30
+
31
+ wandb_project: tinymagnumr6
32
+ wandb_entity:
33
+ wandb_watch:
34
+ wandb_name: tinymagnumr6
35
+ wandb_log_model:
36
+
37
+ gradient_accumulation_steps: 8
38
+ micro_batch_size: 1
39
+ num_epochs: 1
40
+ optimizer: adamw_bnb_8bit
41
+ lr_scheduler: cosine
42
+ learning_rate: 0.000003
43
+ weight_decay: 0.05
44
+
45
+ train_on_inputs: false
46
+ group_by_length: false
47
+ bf16: auto
48
+ fp16:
49
+ tf32: true
50
+
51
+ gradient_checkpointing: true
52
+ early_stopping_patience:
53
+ resume_from_checkpoint:
54
+ local_rank:
55
+ logging_steps: 1
56
+ xformers_attention:
57
+ flash_attention: true
58
+
59
+ warmup_ratio: 0.1
60
+ evals_per_epoch: 4
61
+ eval_table_size:
62
+ eval_max_new_tokens: 128
63
+ saves_per_epoch: 1
64
+
65
+ debug:
66
+ deepspeed:
67
+ fsdp:
68
+ fsdp_config:
69
+
70
+ special_tokens:
71
+ pad_token: <|finetune_right_pad_id|>
sdprompter.yaml ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: MangyMango/Qwen-1.5B-Claude
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ trust_remote_code: true
6
+
7
+ load_in_8bit: false
8
+ load_in_4bit: false
9
+ strict: false
10
+
11
+ datasets:
12
+ - path: NewEden/CivitAI-Prompts
13
+ # type:
14
+ # system_prompt: ""
15
+ # system_format: "<|im_start|>system\n{system}<|im_end|>\n"
16
+ # field_system: instruction
17
+ # field_instruction: input
18
+ # field_input: ""
19
+ # field_output: output
20
+ # no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
21
+
22
+ # system_prompt: ""
23
+ # field_instruction: instruction
24
+ # field_input: input
25
+ # field_output: output
26
+ # format: |-
27
+ # <|im_start|>system
28
+ # {instruction}<|im_end|>
29
+ # <|im_start|>user
30
+ # {input}<|im_end|>
31
+ # <|im_start|>assistant
32
+ # {output}
33
+
34
+ type: alpaca
35
+ conversation: mpt-30b-instruct
36
+ # field_system: instruction
37
+ # field_instruction: input
38
+ # field_input: input
39
+ # field_output: output
40
+ chat_template: alpaca
41
+
42
+ dataset_prepared_path:
43
+ val_set_size: 0.05
44
+ output_dir: ./outputs/out2
45
+ sequence_len: 2048
46
+ sample_packing: true
47
+ eval_sample_packing: true
48
+ pad_to_sequence_len: true
49
+
50
+ adapter:
51
+ lora_model_dir:
52
+ lora_r:
53
+ lora_alpha:
54
+ lora_dropout:
55
+ lora_target_linear: true
56
+ lora_fan_in_fan_out:
57
+
58
+ wandb_project:
59
+ wandb_entity:
60
+ wandb_watch:
61
+ wandb_name:
62
+ wandb_log_model:
63
+
64
+ gradient_accumulation_steps: 64
65
+ micro_batch_size: 1
66
+ num_epochs: 3
67
+ optimizer: adamw_torch
68
+ lr_scheduler: cosine
69
+ learning_rate: 0.00002
70
+
71
+ train_on_inputs: false
72
+ group_by_length: false
73
+ bf16: auto
74
+ fp16:
75
+ tf32: true
76
+
77
+ gradient_checkpointing: true
78
+ gradient_checkpointing_kwargs:
79
+ use_reentrant: false
80
+ early_stopping_patience:
81
+ resume_from_checkpoint:
82
+ local_rank:
83
+ logging_steps: 1
84
+ xformers_attention:
85
+ flash_attention: true
86
+
87
+ warmup_ratio: 0.05
88
+ evals_per_epoch: 4
89
+ saves_per_epoch: 1
90
+ debug:
91
+ weight_decay: 0.0
92
+ special_tokens:
tinygemma.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: SillyTilly/google_gemma-2-2b
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: false
7
+ strict: false
8
+
9
+ # huggingface repo
10
+ datasets:
11
+ - path: NewEden/Kalo-Opus-Instruct-25K-Refusal-killed
12
+ - type: chatml
13
+ - path: NewEden/Gryphe-3.5-16k-Subset
14
+ - type: chatml
15
+
16
+ val_set_size: 0.0
17
+ output_dir: ./outputs/out
18
+
19
+ adapter:
20
+ lora_r:
21
+ lora_alpha:
22
+ lora_dropout:
23
+ lora_target_linear:
24
+
25
+ sequence_len: 8192
26
+ sample_packing: true
27
+ eval_sample_packing: false
28
+ pad_to_sequence_len: true
29
+
30
+ wandb_project: TinyGemmy
31
+ wandb_entity:
32
+ wandb_watch:
33
+ wandb_name: TinyGemmy
34
+ wandb_log_model:
35
+
36
+
37
+ gradient_accumulation_steps: 32
38
+ micro_batch_size: 1
39
+ num_epochs: 2
40
+ optimizer: adamw_bnb_8bit
41
+ lr_scheduler: cosine
42
+ learning_rate: 0.00002
43
+
44
+ train_on_inputs: false
45
+ group_by_length: false
46
+ bf16: auto
47
+ fp16:
48
+ tf32: true
49
+
50
+ gradient_checkpointing: true
51
+ early_stopping_patience:
52
+ resume_from_checkpoint:
53
+ local_rank:
54
+ logging_steps: 1
55
+ xformers_attention:
56
+ flash_attention: true
57
+
58
+ warmup_ratio: 0.1
59
+ evals_per_epoch: 4
60
+ eval_table_size:
61
+ eval_max_new_tokens: 128
62
+ saves_per_epoch: 1
63
+ debug:
64
+ deepspeed:
65
+ weight_decay: 0.0
66
+ fsdp:
67
+ fsdp_config:
68
+ special_tokens: