Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
text
Languages:
Indonesian
Size:
100K - 1M
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,175 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
# Indonesian Dataset
|
5 |
+
|
6 |
+
Collections of Indonesian Natural Language Processing dictionaries, corpus, datasets.
|
7 |
+
|
8 |
+
## Table of contents
|
9 |
+
* [Crawl](#crawl)
|
10 |
+
* [Kaskus WebText](#kaskus-webtext)
|
11 |
+
* [Twitter Puisi](#twitter-puisi)
|
12 |
+
* [Wipedia Links](#wikipedia-links)
|
13 |
+
* [Dictionary](#dictionary)
|
14 |
+
* [KBBI](#kbbi)
|
15 |
+
* [Wordlist](#wordlist)
|
16 |
+
* [Dump](#dump)
|
17 |
+
* [CC-News-ID](#cc-news-id)
|
18 |
+
* [Javanese Text](#javanese-text)
|
19 |
+
* [mC4](#mc4)
|
20 |
+
* [Twitter](#twitter)
|
21 |
+
* [Multimodal](#multimodal)
|
22 |
+
* [CC3M](#cc3m)
|
23 |
+
* [CC12M](#cc12m)
|
24 |
+
* [YFCC100M OpenAI Subset](#yfcc100m-openai-subset)
|
25 |
+
* [Paraphrase](#paraphrase)
|
26 |
+
* [MultiNLI](#multinli)
|
27 |
+
* [ParaBank](#parabank)
|
28 |
+
* [ParaNMT](#paranmt)
|
29 |
+
* [PAWS](#paws)
|
30 |
+
* [SBERT Paraphrase Data](#sbert-paraphrase-data)
|
31 |
+
* [SNLI](#snli)
|
32 |
+
* [Question Answering](#question-answering)
|
33 |
+
* [SQuAD](#squad)
|
34 |
+
* [Mathematics Dataset](#mathematics-dataset)
|
35 |
+
* [Speech](#speech)
|
36 |
+
* [Google TTS](#google-tts)
|
37 |
+
* [Unsupervised](#unsupervised)
|
38 |
+
* [Summarization](#summarization)
|
39 |
+
* [Gigaword](#gigaword)
|
40 |
+
* [Reddit TLDR](#reddit-tldr)
|
41 |
+
* [WikiHow](#wikihow)
|
42 |
+
* [Translation](#translation)
|
43 |
+
* [Europarl](#europarl)
|
44 |
+
* [EuroPat](#europat)
|
45 |
+
* [ParaCrawl](#paracrawl)
|
46 |
+
|
47 |
+
## [Crawl](crawl)
|
48 |
+
|
49 |
+
#### [Kaskus WebText](crawl/kaskus-webtext)
|
50 |
+
|
51 |
+
Scraped content from Kaskus with 3 cendol or more.
|
52 |
+
|
53 |
+
#### [Twitter Puisi](crawl/twitter-puisi)
|
54 |
+
|
55 |
+
Poems from various user on Twitter.
|
56 |
+
|
57 |
+
#### [Wikipedia Links](crawl/wikipedia-links)
|
58 |
+
|
59 |
+
Scraped content from Wikipedia external links.
|
60 |
+
|
61 |
+
## [Dictionary](dictionary)
|
62 |
+
|
63 |
+
#### [KBBI](https://github.com/IllegalStashes/kbbi)
|
64 |
+
|
65 |
+
Scraped Kamus Besar Bahasa Indonesia Daring.
|
66 |
+
|
67 |
+
#### [Wordlist](dictionary/wordlist)
|
68 |
+
|
69 |
+
105,226 words from Kamus Besar Bahasa Indonesia.
|
70 |
+
|
71 |
+
## [Dump](dump)
|
72 |
+
|
73 |
+
#### [CC-News-ID](dump/cc-news)
|
74 |
+
|
75 |
+
Processed CC-News (CommonCrawl News). Contains News from 2016-2021 from various news outlets.
|
76 |
+
|
77 |
+
#### [Javanese Text](dump/jv-text)
|
78 |
+
|
79 |
+
Extracting Javanese text from available data.
|
80 |
+
|
81 |
+
#### [mC4](dump/mc4)
|
82 |
+
|
83 |
+
(Hopefully) clean mC4.
|
84 |
+
|
85 |
+
#### [Twitter](dump/twitter)
|
86 |
+
|
87 |
+
Twitter dump from [ArchiveTeam Twitter Stream Grab](https://archive.org/details/twitterstream). More data will be released soon!
|
88 |
+
|
89 |
+
## [Multimodal](multimodal)
|
90 |
+
|
91 |
+
#### [CC3M](multimodal/cc3m)
|
92 |
+
|
93 |
+
Translated Conceptual Captions 3M from Google Research.
|
94 |
+
|
95 |
+
#### [CC12M](multimodal/cc12m)
|
96 |
+
|
97 |
+
Translated Conceptual Captions 12M from Google Research, meant to be used for vision-and-language pre-training.
|
98 |
+
|
99 |
+
#### [YFCC100M OpenAI Subset](multimodal/yfcc100m_openai)
|
100 |
+
|
101 |
+
Translated YFCC100M OpenAI Subset used in CLIP dataset ablation.
|
102 |
+
|
103 |
+
## [Paraphrase](paraphrase)
|
104 |
+
|
105 |
+
#### [MultiNLI](paraphrase/multinli)
|
106 |
+
|
107 |
+
Translated Multi-Genre Natural Language Inference (MultiNLI). The corpus is modeled on the SNLI corpus, but differs in that covers a range of genres of spoken and written text.
|
108 |
+
|
109 |
+
#### [ParaBank](paraphrase/parabank)
|
110 |
+
|
111 |
+
Translated ParaBank v2.0 dataset.
|
112 |
+
|
113 |
+
#### [ParaNMT](paraphrase/paranmt)
|
114 |
+
|
115 |
+
Translated ParaNMT dataset, 5M filtered variant.
|
116 |
+
|
117 |
+
#### [PAWS](paraphrase/paws)
|
118 |
+
|
119 |
+
Translated [PAWS](https://github.com/google-research-datasets/paws) dataset from Google Research.
|
120 |
+
|
121 |
+
#### [SBERT Paraphrase Data](paraphrase/sbert)
|
122 |
+
|
123 |
+
Various paraphrase datasets compiled by [SBERT](https://www.sbert.net/examples/training/paraphrases/README.html) translated to Indonesian.
|
124 |
+
|
125 |
+
#### [SNLI](paraphrase/snli)
|
126 |
+
|
127 |
+
The Stanford Natural Language Inference (SNLI) corpus, translated to Indonesian.
|
128 |
+
|
129 |
+
## [Question Answering](question-answering)
|
130 |
+
|
131 |
+
#### [SQuAD](question-answering/squad)
|
132 |
+
|
133 |
+
Translated SQuAD from Stanford University.
|
134 |
+
|
135 |
+
#### [Mathematics Dataset](question-answering/mathematics_dataset)
|
136 |
+
|
137 |
+
Automatically generated mathematical question and answer pairs. Translated from DeepMind's Mathematics Dataset.
|
138 |
+
|
139 |
+
## [Speech](speech)
|
140 |
+
|
141 |
+
#### [Google TTS](speech/gtts)
|
142 |
+
|
143 |
+
Automatically generated speech using Google Translate TTS (id-ID-Wavenet-A).
|
144 |
+
|
145 |
+
#### [Unsupervised](speech/unsupervised)
|
146 |
+
|
147 |
+
A large-scale Indonesian speech corpus for pre-training speech recognition model.
|
148 |
+
|
149 |
+
## [Summarization](summarization)
|
150 |
+
|
151 |
+
#### [Gigaword](summarization/gigaword)
|
152 |
+
|
153 |
+
Translated English Gigaword dataset.
|
154 |
+
|
155 |
+
#### [Reddit TLDR](summarization/reddit_tldr)
|
156 |
+
|
157 |
+
4 Million content-summary pairs translated from Webis-TLDR-17.
|
158 |
+
|
159 |
+
#### [WikiHow](summarization/wikihow)
|
160 |
+
|
161 |
+
Replicate [WikiHow: A Large Scale Text Summarization Dataset](https://arxiv.org/abs/1810.09305) to Indonesian.
|
162 |
+
|
163 |
+
## [Translation](translation)
|
164 |
+
|
165 |
+
#### [Europarl](translation/europarl)
|
166 |
+
|
167 |
+
A parallel corpus extracted from the European Parliament web site by Philipp Koehn (University of Edinburgh). The main intended use is to aid statistical machine translation research. (Translated to Indonesian using Google Translate)
|
168 |
+
|
169 |
+
#### [EuroPat](translation/europat)
|
170 |
+
|
171 |
+
Parallel corpora of patents from the United States Patent and Trademark Office and from the European Patent Organisation. (Translated to Indonesian using Google Translate)
|
172 |
+
|
173 |
+
#### [ParaCrawl](translation/paracrawl)
|
174 |
+
|
175 |
+
Massively translated ParaCrawl v.7.1 from OPUS using Google Translate.
|