Rhodes commited on
Commit
5f6d4ef
·
1 Parent(s): e8836b8

:hammer: Added citation

Browse files
Files changed (1) hide show
  1. quakeset.py +25 -52
quakeset.py CHANGED
@@ -22,8 +22,15 @@ import numpy as np
22
  import pandas as pd
23
 
24
  # Find for instance the citation on arxiv or on the dataset repo/website
25
- _CITATION = """\
26
- WIP
 
 
 
 
 
 
 
27
  """
28
 
29
  # You can copy an official description
@@ -39,7 +46,7 @@ _LICENSE = "OPENRAIL"
39
 
40
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
41
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
42
- _URLS = ["earthquakes.h5", "epicenters.parquet"]
43
 
44
 
45
  class QuakeSet(datasets.GeneratorBasedBuilder):
@@ -56,19 +63,12 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
56
  # BUILDER_CONFIG_CLASS = MyBuilderConfig
57
 
58
  # You will be able to load one or the other configurations in the following list with
59
- # data = datasets.load_dataset('my_dataset', 'first_domain')
60
- # data = datasets.load_dataset('my_dataset', 'second_domain')
61
  BUILDER_CONFIGS = [
62
  datasets.BuilderConfig(
63
  name="default",
64
  version=VERSION,
65
  description="Default configuration",
66
- ),
67
- datasets.BuilderConfig(
68
- name="epicenter",
69
- version=VERSION,
70
- description="Epicenter configuration",
71
- ),
72
  ]
73
 
74
  DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
@@ -91,21 +91,6 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
91
  "y": datasets.Sequence(datasets.Value("float32"), length=512),
92
  }
93
  )
94
- elif self.config.name == "epicenter":
95
- features = datasets.Features(
96
- {
97
- "sample_key": datasets.Value("string"), # sample_id
98
- "pre_post_image": datasets.Array3D(
99
- shape=(4, 512, 512), dtype="float32"
100
- ),
101
- "contains_epicenter": datasets.ClassLabel(num_classes=2),
102
- "epsg": datasets.Value("int32"),
103
- "epicenter": datasets.Sequence(datasets.Value("float32"), length=2),
104
- "lon": datasets.Sequence(datasets.Value("float32"), length=512),
105
- "lat": datasets.Sequence(datasets.Value("float32"), length=512),
106
- "affected": datasets.ClassLabel(num_classes=2),
107
- }
108
- )
109
 
110
  return datasets.DatasetInfo(
111
  # This is the description that will appear on the datasets page.
@@ -160,7 +145,6 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
160
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
161
  def _generate_examples(self, filepath, split):
162
  # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
163
- df = pd.read_parquet(filepath[1])
164
  sample_ids = []
165
  with h5py.File(filepath[0]) as f:
166
  for key, patches in f.items():
@@ -194,30 +178,19 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
194
  "epsg": attributes["epsg"],
195
  }
196
 
197
- if self.config.name == "default":
198
- resource_id, patch_id = sample_id.split("/")
199
- x = f[resource_id]["x"][...]
200
- y = f[resource_id]["y"][...]
201
- x_start = int(patch_id.split("_")[1]) % (x.shape[0] // 512)
202
- y_start = int(patch_id.split("_")[1]) // (x.shape[0] // 512)
203
- x = x[x_start * 512 : (x_start + 1) * 512]
204
- y = y[y_start * 512 : (y_start + 1) * 512]
205
- item |= {
206
- "affected": label,
207
- "magnitude": np.float32(attributes["magnitude"]),
208
- "hypocenter": attributes["hypocenter"],
209
- "x": x.flatten(),
210
- "y": y.flatten(),
211
- }
212
- elif self.config.name == "epicenter":
213
- selected_infos = df[df["sample_id"] == sample_key]
214
- item |= {
215
- "affected": label,
216
- "contains_epicenter": label == 1
217
- and selected_infos["contains_epicenter"].item(),
218
- "epicenter": selected_infos["epicenter"].item(),
219
- "lon": selected_infos["lon"].item(),
220
- "lat": selected_infos["lat"].item(),
221
- }
222
 
223
  yield sample_key, item
 
22
  import pandas as pd
23
 
24
  # Find for instance the citation on arxiv or on the dataset repo/website
25
+ _CITATION = """
26
+ @misc{cambrin2024quakeset,
27
+ title={QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1},
28
+ author={Daniele Rege Cambrin and Paolo Garza},
29
+ year={2024},
30
+ eprint={2403.18116},
31
+ archivePrefix={arXiv},
32
+ primaryClass={cs.CV}
33
+ }
34
  """
35
 
36
  # You can copy an official description
 
46
 
47
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
48
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
49
+ _URLS = ["earthquakes.h5"]
50
 
51
 
52
  class QuakeSet(datasets.GeneratorBasedBuilder):
 
63
  # BUILDER_CONFIG_CLASS = MyBuilderConfig
64
 
65
  # You will be able to load one or the other configurations in the following list with
 
 
66
  BUILDER_CONFIGS = [
67
  datasets.BuilderConfig(
68
  name="default",
69
  version=VERSION,
70
  description="Default configuration",
71
+ )
 
 
 
 
 
72
  ]
73
 
74
  DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
 
91
  "y": datasets.Sequence(datasets.Value("float32"), length=512),
92
  }
93
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  return datasets.DatasetInfo(
96
  # This is the description that will appear on the datasets page.
 
145
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
146
  def _generate_examples(self, filepath, split):
147
  # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
 
148
  sample_ids = []
149
  with h5py.File(filepath[0]) as f:
150
  for key, patches in f.items():
 
178
  "epsg": attributes["epsg"],
179
  }
180
 
181
+ resource_id, patch_id = sample_id.split("/")
182
+ x = f[resource_id]["x"][...]
183
+ y = f[resource_id]["y"][...]
184
+ x_start = int(patch_id.split("_")[1]) % (x.shape[0] // 512)
185
+ y_start = int(patch_id.split("_")[1]) // (x.shape[0] // 512)
186
+ x = x[x_start * 512 : (x_start + 1) * 512]
187
+ y = y[y_start * 512 : (y_start + 1) * 512]
188
+ item |= {
189
+ "affected": label,
190
+ "magnitude": np.float32(attributes["magnitude"]),
191
+ "hypocenter": attributes["hypocenter"],
192
+ "x": x.flatten(),
193
+ "y": y.flatten(),
194
+ }
 
 
 
 
 
 
 
 
 
 
 
195
 
196
  yield sample_key, item