library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_tensor_list_as_input
|
def test_tensor_list_as_input(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, tl):
ctx.save_for_backward(tl[0], tl[1])
return x.clone() * (tl[0] + tl[1])
@staticmethod
def backward(ctx, grad):
tl0, tl1 = ctx.saved_tensors
return grad * (tl0 + tl1), None
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, tl):
return Foo.apply(x, tl)
x = torch.tensor(2.0, requires_grad=True)
tl = [
torch.tensor(3.0, requires_grad=True),
torch.tensor(4.0, requires_grad=True),
]
result = f(x, tl)
result.sum().backward()
self.assertEqual(result, Foo.apply(x, tl))
self.assertEqual(x.grad, 7.0)
self.assertEqual(tl[0].grad, None)
self.assertEqual(tl[1].grad, None)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_multiple_different_non_tensor_inputs
|
def test_multiple_different_non_tensor_inputs(self):
@dataclass
class Weird:
x: int
b: torch.Tensor
c: torch.Tensor
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weird, z, tl):
ctx.save_for_backward(weird.b, weird.c, tl[0], tl[1])
return x.clone() * weird.b * weird.c * tl[0]
@staticmethod
def backward(ctx, grad):
b, c, tl0, _ = ctx.saved_tensors
return grad * b * c * tl0, None, grad * 2, None
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, weird, z, tl):
return Foo.apply(x, weird, z, tl)
x = torch.tensor(2.0, requires_grad=True)
weird = Weird(
1.2,
torch.tensor(2.5, requires_grad=True),
torch.tensor(3.5, requires_grad=True),
)
z = torch.tensor(3.0, requires_grad=True)
tl = [
torch.tensor(0.5, requires_grad=True),
torch.tensor(0.6, requires_grad=True),
]
result = f(x, weird, z, tl)
result.sum().backward()
self.assertEqual(result, Foo.apply(x, weird, z, tl))
self.assertEqual(x.grad, 2.5 * 3.5 * 0.5)
self.assertEqual(z.grad, 2.0)
self.assertEqual(weird.b.grad, None)
self.assertEqual(weird.c.grad, None)
self.assertEqual(tl[0].grad, None)
self.assertEqual(tl[1].grad, None)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
foo
|
def foo(x, scale):
config = (
x.size(),
x.stride(),
x.storage_offset(),
x.dtype,
x.layout,
x.requires_grad,
)
x = FooTensor(x, config, scale)
x = foo_autograd_fn.apply(x)
return x
y_ref = foo(x_ref, scale)
y_ref.sum().backward()
foo_opt = torch.compile(foo, backend="eager")
y = foo_opt(x, scale)
y.sum().backward()
self.assertEqual(y, y_ref)
self.assertEqual(x.grad, x_ref.grad)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_smuggle_tensor_and_complex_structures
|
def test_smuggle_tensor_and_complex_structures(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x):
ctx.x0 = x
ctx.x1 = [1, 2, 3]
return x * 2
@staticmethod
def backward(ctx, grad_out):
x0mul = grad_out * ctx.x0
for i in ctx.x1:
x0mul = (x0mul * i) + x0mul
return x0mul
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, fullgraph=True, dynamic=True)
def foo(x):
return Foo.apply(x)
foo(torch.randn(2, requires_grad=True))
self.assertEqual(cnts.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
foo
|
def foo(x, scale):
config = (
x.size(),
x.stride(),
x.storage_offset(),
x.dtype,
x.layout,
x.requires_grad,
)
x = FooTensor(x, config, scale)
x = foo_autograd_fn.apply(x)
return x
y_ref = foo(x_ref, scale)
y_ref.sum().backward()
foo_opt = torch.compile(foo, backend="eager")
y = foo_opt(x, scale)
y.sum().backward()
self.assertEqual(y, y_ref)
self.assertEqual(x.grad, x_ref.grad)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
fn
|
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
run_fn
|
def run_fn(a):
out = MyFunc2.apply(a)
return out.sum()
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, inp):
return inp.view_as(inp)
@staticmethod
def backward(ctx, grad):
return grad
class MyAdder(torch.autograd.Function):
@staticmethod
def forward(ctx, a, b):
a.add_(b)
ctx.mark_dirty(a)
return a
@staticmethod
def backward(ctx, grad):
return grad, grad
class InplaceMul(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
result = x.mul_(2)
ctx.mark_dirty(result)
return result
@staticmethod
def backward(ctx, grad_output):
pass
@staticmethod
def jvp(ctx, x_t):
if jvp_err: # noqa: F821
return x_t
else:
return x_t.mul_(2)
class MyFn2(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
return x + y, x
@staticmethod
def vjp(ctx, gO1, gO2):
return gO1 + gO2, gO1
@staticmethod
def jvp(ctx, x_t, y_t):
return x_t + y_t, fn(x_t) # noqa: F821
class MyFn3(torch.autograd.Function):
@staticmethod
def forward(ctx, inp, inplace):
view = inp.clone()[:3]
if inplace:
view += 2
return view
@staticmethod
def backward(ctx, grad):
return grad, None
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test
|
def test():
x = torch.ones(2, 4, 4).requires_grad_()
mult2(x)
x = torch.tensor(2).double().requires_grad_()
double(x)
double2(x)
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
q, p = Identity.apply(x, y)
a = torch.rand(1, 2)
b = torch.rand(1, requires_grad=True)
view_a = MyFn.apply(a)
a = torch.ones(2, requires_grad=True)
b = torch.ones(2, requires_grad=True)
c = MyAdder.apply(a.clone(), b)
c.sum().backward()
z = torch.tensor(1.0, requires_grad=True)
x = z.clone()
y = InplaceMul.apply(x)
a = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
b = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
c = torch.tensor(1.0, dtype=torch.double)
d = torch.tensor(1.0, dtype=torch.double)
MyFn2.apply(a, b)
MyFn2.apply(c, d)
base = torch.rand(10, requires_grad=True)
foo = MyFn3.apply(base, False)
test()
opt_test = torch._dynamo.optimize("eager")(test)
opt_test()
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_tensor_subclass_intermediary_input
|
def test_tensor_subclass_intermediary_input(self):
class FooTensor(torch.Tensor):
@staticmethod
def __new__(cls, data, config, scale):
self = torch.Tensor._make_wrapper_subclass(
cls,
config[0],
strides=config[1],
storage_offset=config[2],
dtype=config[3],
layout=config[4],
requires_grad=config[5],
device=data.device,
)
self._data = data
self._config = config
self._scale = scale
return self
def __repr__(self):
return "FooTensor"
def __tensor_flatten__(self):
return ("_data",), (
self._config,
self._scale,
)
@staticmethod
def __tensor_unflatten__(tensors, metadatas, outer_size, outer_stride):
return FooTensor(tensors["_data"], metadatas[0], metadatas[1])
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
# handling clone and view is so dynamo fakefication passes, it's not
# intended to be handling user code
if func == torch.ops.aten.clone.default:
return FooTensor(
args[0]._data.clone(), args[0]._config, args[0]._scale
)
elif func == torch.ops.aten.view.default:
new_data = args[0]._data.view(*args[1:])
return FooTensor(new_data, args[0]._config, args[0]._scale)
raise NotImplementedError
class foo_autograd_fn(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
# access some data from `x`, where `x` is a tensor subclass
x2 = x._data + 1.0
# create and return a tensor subclass from within a torch.autograd.Function
x3 = FooTensor(x2, x._config, x._scale)
return x3._data
@staticmethod
def backward(ctx, g):
return g
x_ref = torch.randn(4, 4).requires_grad_(True)
x = copy.deepcopy(x_ref)
scale = torch.tensor(1.0)
# Weird that this is needed, but not having this breaks a lot of things
torch._dynamo.allow_in_graph(FooTensor)
def foo(x, scale):
config = (
x.size(),
x.stride(),
x.storage_offset(),
x.dtype,
x.layout,
x.requires_grad,
)
x = FooTensor(x, config, scale)
x = foo_autograd_fn.apply(x)
return x
y_ref = foo(x_ref, scale)
y_ref.sum().backward()
foo_opt = torch.compile(foo, backend="eager")
y = foo_opt(x, scale)
y.sum().backward()
self.assertEqual(y, y_ref)
self.assertEqual(x.grad, x_ref.grad)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
__new__
|
def __new__(cls, data, config, scale):
self = torch.Tensor._make_wrapper_subclass(
cls,
config[0],
strides=config[1],
storage_offset=config[2],
dtype=config[3],
layout=config[4],
requires_grad=config[5],
device=data.device,
)
self._data = data
self._config = config
self._scale = scale
return self
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
class FooTensor(torch.Tensor):
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
__repr__
|
def __repr__(self):
return "FooTensor"
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
class FooTensor(torch.Tensor):
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
__torch_dispatch__
|
def __torch_dispatch__(cls, func, types, args, kwargs=None):
# handling clone and view is so dynamo fakefication passes, it's not
# intended to be handling user code
if func == torch.ops.aten.clone.default:
return FooTensor(
args[0]._data.clone(), args[0]._config, args[0]._scale
)
elif func == torch.ops.aten.view.default:
new_data = args[0]._data.view(*args[1:])
return FooTensor(new_data, args[0]._config, args[0]._scale)
raise NotImplementedError
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
class FooTensor(torch.Tensor):
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_backward_returns_none_for_tensor_input
|
def test_backward_returns_none_for_tensor_input(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(y)
return x.clone() * y
@staticmethod
def backward(ctx, grad):
(y,) = ctx.saved_tensors
return grad * y, None
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, y):
return Foo.apply(x, y)
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)
result = f(x, y)
result.sum().backward()
self.assertEqual(result, Foo.apply(x, y))
self.assertEqual(x.grad, 3.0)
self.assertEqual(y.grad, None)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_function_with_bound_free_variable
|
def test_function_with_bound_free_variable(self):
class LowerBound(torch.autograd.Function):
@staticmethod
def forward(ctx, inputs, bound):
ctx.save_for_backward(inputs, inputs.new_ones(1) * bound)
return inputs.clamp(min=bound)
@staticmethod
def backward(ctx, grad_output):
inputs, bound = ctx.saved_tensors
return (inputs >= bound) * grad_output, None
class MyMod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.rand([4, 128, 32, 32]))
def forward(self, x):
gamma = LowerBound.apply(self.gamma, 1)
return x + gamma
mod = MyMod()
args, kwargs = ([torch.rand([4, 128, 32, 32])], {})
before = mod(*args, **kwargs)
compiled_model = torch._dynamo.optimize("eager")(mod)
after = compiled_model(*args, **kwargs)
self.assertEqual(before, after)
# I pulled all of these test cases from test_autograd.py
# In the future, we should make the Dynamo test suite actually
# run on test_autograd.py (it's disabled right now) and delete these.
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
mult1
|
def mult1(x):
return x.prod(dim=-1).prod(dim=-1)
class Mult(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = mult1(x)
ctx.save_for_backward(x, y)
return y
@staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
return (grad_output * y)[:, None, None] / x
mult2 = Mult.apply
class Double(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x**2
ctx.save_for_backward(x, y)
return y
@staticmethod
def backward(ctx, grad_output):
x, _ = ctx.saved_tensors
return grad_output * 2 * x
# this is equivalent, but uses the output of .forward() in .backward()
class Double2(Double):
@staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
return grad_output * 2 * y / x
double = Double.apply
double2 = Double2.apply
class Identity(torch.autograd.Function):
@staticmethod
def forward(ctx, a, b):
return a, a + b
@staticmethod
def backward(ctx, grad_a, grad_b):
return grad_a + grad_b, grad_b
class MyFunc2(torch.autograd.Function):
@staticmethod
def forward(ctx, inp):
return inp.clone()
@staticmethod
def backward(ctx, gO):
return torch.tensor(float("nan")).expand(10, 10)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
jvp
|
def jvp(ctx, x_t):
if jvp_err: # noqa: F821
return x_t
else:
return x_t.mul_(2)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
class InplaceMul(torch.autograd.Function):
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
jvp
|
def jvp(ctx, x_t):
if jvp_err: # noqa: F821
return x_t
else:
return x_t.mul_(2)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
class InplaceMul(torch.autograd.Function):
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
foo
|
def foo(x, scale):
config = (
x.size(),
x.stride(),
x.storage_offset(),
x.dtype,
x.layout,
x.requires_grad,
)
x = FooTensor(x, config, scale)
x = foo_autograd_fn.apply(x)
return x
y_ref = foo(x_ref, scale)
y_ref.sum().backward()
foo_opt = torch.compile(foo, backend="eager")
y = foo_opt(x, scale)
y.sum().backward()
self.assertEqual(y, y_ref)
self.assertEqual(x.grad, x_ref.grad)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_smuggle_symint_issue_111031
|
def test_smuggle_symint_issue_111031(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x):
ctx.x0 = x.size(0)
return x * 2
@staticmethod
def backward(ctx, grad_out):
return grad_out * ctx.x0
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, fullgraph=True, dynamic=True)
def foo(x):
return Foo.apply(x)
foo(torch.randn(2, requires_grad=True))
self.assertEqual(cnts.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
foo
|
def foo(x, scale):
config = (
x.size(),
x.stride(),
x.storage_offset(),
x.dtype,
x.layout,
x.requires_grad,
)
x = FooTensor(x, config, scale)
x = foo_autograd_fn.apply(x)
return x
y_ref = foo(x_ref, scale)
y_ref.sum().backward()
foo_opt = torch.compile(foo, backend="eager")
y = foo_opt(x, scale)
y.sum().backward()
self.assertEqual(y, y_ref)
self.assertEqual(x.grad, x_ref.grad)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_needs_input_grad
|
def test_needs_input_grad(self):
cnt = torch._dynamo.testing.CompileCounter()
class NeedsInputGradFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
result = foo + foo
ctx.save_for_backward(result)
return result
@staticmethod
@torch.compile(backend=cnt, fullgraph=True)
def backward(ctx, grad_output):
(result,) = ctx.saved_tensors
if ctx.needs_input_grad[0]:
return grad_output * result.sin()
return None
x = torch.randn(10, requires_grad=True)
NeedsInputGradFunc.apply(x).sum().backward()
self.assertEqual(x.grad.shape, x.shape)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 2)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_repeated_save_for_backward_calls
|
def test_repeated_save_for_backward_calls(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x)
ctx.save_for_backward(x, y)
return x * y
@staticmethod
def backward(ctx, grad_out):
x, y = ctx.saved_tensors
return grad_out * x, grad_out * y
cnts = torch._dynamo.testing.CompileCounter()
def foo(x, y):
return Foo.apply(x, y)
x_ref = torch.randn(2, requires_grad=True)
y_ref = torch.randn(2, requires_grad=True)
x_test = x_ref.clone().detach().requires_grad_()
y_test = y_ref.clone().detach().requires_grad_()
out_ref = foo(x_ref, y_ref)
out_ref.sum().backward()
out_test = torch.compile(foo, backend=cnts)(x_test, y_test)
out_test.sum().backward()
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(out_ref, out_test)
self.assertEqual(x_ref.grad, x_test.grad)
self.assertEqual(y_ref.grad, y_test.grad)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_mark_multi_output_non_differentiable
|
def test_mark_multi_output_non_differentiable(self):
from torch.autograd import Function
class MyFunction(Function):
@staticmethod
def forward(ctx, x, y, z):
out1 = x.sin()
out2 = y * 2
out3 = z + 3
ctx.mark_non_differentiable(out2, out3)
return out1, out2, out3
@staticmethod
def backward(ctx, grad1, grad2, grad3):
return grad1.cos(), grad2, grad3
@torch.compile(backend="aot_eager", fullgraph=True)
def fn(x, y, z):
return MyFunction.apply(x, y, z)
x = torch.tensor(10.0, requires_grad=True)
y = torch.tensor(20.0, requires_grad=True)
z = torch.tensor(30.0, requires_grad=True)
ref1, ref2, ref3 = MyFunction.apply(x, y, z)
res1, res2, res3 = fn(x, y, z)
self.assertEqual(ref1, res1)
self.assertEqual(ref2, res2)
self.assertEqual(ref3, res3)
# Ensure out1 requires gradients, out2 does not.
self.assertTrue(ref1.requires_grad)
self.assertTrue(res1.requires_grad)
self.assertFalse(ref2.requires_grad)
self.assertFalse(res2.requires_grad)
self.assertFalse(ref3.requires_grad)
self.assertFalse(res3.requires_grad)
res1.sum().backward()
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
fn
|
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_default_values
|
def test_default_values(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x, alpha=0.99):
return x
@staticmethod
def backward(ctx, grad_out):
return grad_out
@torch.compile
def foo(x):
return Foo.apply(x)
# Make sure guards for default values do not crash
foo(torch.randn(2))
foo(torch.randn(2, requires_grad=True))
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
foo
|
def foo(x, scale):
config = (
x.size(),
x.stride(),
x.storage_offset(),
x.dtype,
x.layout,
x.requires_grad,
)
x = FooTensor(x, config, scale)
x = foo_autograd_fn.apply(x)
return x
y_ref = foo(x_ref, scale)
y_ref.sum().backward()
foo_opt = torch.compile(foo, backend="eager")
y = foo_opt(x, scale)
y.sum().backward()
self.assertEqual(y, y_ref)
self.assertEqual(x.grad, x_ref.grad)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
fn
|
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_triton_kernel_multiple_out
|
def test_triton_kernel_multiple_out(self):
class Add(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
ctx.t1 = x
ctx.t2 = y
output = torch.zeros_like(x)
n_elements = output.numel()
grid = lambda meta: ( # noqa: E731
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
)
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=16)
return output, x
@staticmethod
def backward(ctx, grad_output, old_x):
x, y = ctx.saved_tensors
x1 = ctx.t1
y1 = ctx.t2
return old_x * x * x1 * grad_output, y * y1 * grad_output
@torch.compile(fullgraph=True, backend="inductor")
def f(x, y):
z = Add.apply(x, y)
return z
x = torch.randn(10, device="cuda", requires_grad=True)
y = torch.randn(10, device="cuda", requires_grad=True)
z, _ = f(x, y)
loss = z.sum()
loss.backward()
self.assertEqual(x + y, z)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_base_output.py
|
fn
|
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
return tmp
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=1)
|
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from diffusers.models import unet_2d
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_base_output.py
|
fn
|
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
return tmp
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=1)
|
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from diffusers.models import unet_2d
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_base_output.py
|
fn
|
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
return tmp
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=1)
|
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from diffusers.models import unet_2d
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_base_output.py
|
fn
|
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
return tmp
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=1)
|
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from diffusers.models import unet_2d
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_base_output.py
|
fn
|
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
return tmp
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=1)
|
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from diffusers.models import unet_2d
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_backward_higher_order_ops.py
|
_side_effect_stateful_fn2
|
def _side_effect_stateful_fn2(x, obj):
obj.counter = obj.counter + 1
return _multiply(x)
|
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_backward_higher_order_ops.py
|
_side_effectful_invoke2
|
def _side_effectful_invoke2(grad, fn):
return trace_wrapped(grad, fn=fn)
graph = None
|
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_backward_higher_order_ops.py
|
inner_compiler
|
def inner_compiler(gm_, example_inputs_):
nonlocal graph
self.assertEqual(graph, None)
graph = gm_
return inductor.compile(gm_, example_inputs_)
return torch.compile(
gm, backend=inner_compiler, fullgraph=True, dynamic=True
)
|
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_backward_higher_order_ops.py
|
fn
|
def fn(x, y):
x.register_hook(_multiply_invoke)
return x * y
out = fn(x, y)
grad_out = torch.tensor([2.0, 2.0])
out.backward(grad_out)
self.assertEqual(x.grad, y * grad_out)
|
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_backward_higher_order_ops.py
|
_graph_breaking_fn
|
def _graph_breaking_fn(x):
print("Boo!")
return _multiply(x)
|
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_backward_higher_order_ops.py
|
_graph_break_invoke
|
def _graph_break_invoke(grad):
return trace_wrapped(grad, fn=_graph_breaking_fn)
|
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_backward_higher_order_ops.py
|
fn
|
def fn(x, y):
x.register_hook(_multiply_invoke)
return x * y
out = fn(x, y)
grad_out = torch.tensor([2.0, 2.0])
out.backward(grad_out)
self.assertEqual(x.grad, y * grad_out)
|
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_base_output.py
|
maybe_skip
|
def maybe_skip(fn):
if unet_2d is None:
return unittest.skip("requires diffusers")(fn)
return fn
class TestBaseOutput(torch._dynamo.test_case.TestCase):
@maybe_skip
def test_create(self):
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
return tmp
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=1)
@maybe_skip
def test_assign(self):
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
tmp.sample = a + 2
return tmp
args = [torch.randn(10)]
obj1 = fn(*args)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnts)(fn)
obj2 = opt_fn(*args)
self.assertTrue(same(obj1.sample, obj2.sample))
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(cnts.op_count, 2)
def _common(self, fn, op_count):
args = [
unet_2d.UNet2DOutput(
sample=torch.randn(10),
)
]
obj1 = fn(*args)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnts)(fn)
obj2 = opt_fn(*args)
self.assertTrue(same(obj1, obj2))
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(cnts.op_count, op_count)
@maybe_skip
def test_getattr(self):
def fn(obj: unet_2d.UNet2DOutput):
x = obj.sample * 10
return x
self._common(fn, 1)
@maybe_skip
def test_getitem(self):
def fn(obj: unet_2d.UNet2DOutput):
x = obj["sample"] * 10
return x
self._common(fn, 1)
@maybe_skip
def test_tuple(self):
def fn(obj: unet_2d.UNet2DOutput):
a = obj.to_tuple()
return a[0] * 10
self._common(fn, 1)
@maybe_skip
def test_index(self):
def fn(obj: unet_2d.UNet2DOutput):
return obj[0] * 10
self._common(fn, 1)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from diffusers.models import unet_2d
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_base_output.py
|
fn
|
def fn(a):
tmp = unet_2d.UNet2DOutput(a + 1)
return tmp
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=1)
|
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from diffusers.models import unet_2d
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
forward
|
def forward(self, x):
return self.relu(self.linear(x))
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class ToyModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
test_compilation
|
def test_compilation(self):
torch._dynamo.reset()
model = ToyModel()
cnt = CompileCounter()
model.compile(backend=cnt)
x = torch.randn(10, 10)
model(x)
self.assertEqual(cnt.frame_count, 1)
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class InPlaceCompilationTests(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
test_overwrite_call_impl
|
def test_overwrite_call_impl(self):
torch._dynamo.reset()
model = ToyModel()
self.assertTrue(model._compiled_call_impl is None)
model.compile()
self.assertTrue(model._compiled_call_impl is not None)
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class InPlaceCompilationTests(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
test_save
|
def test_save(self):
torch._dynamo.reset()
model = ToyModel()
model.compile()
model(torch.randn(1, 10))
with tempfile.TemporaryDirectory() as tmpdirname:
torch.save(model, os.path.join(tmpdirname, "model.pt"))
loaded_model = torch.load(os.path.join(tmpdirname, "model.pt"))
loaded_model(torch.randn(1, 10))
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class InPlaceCompilationTests(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
test_state_dict_save
|
def test_state_dict_save(self):
torch._dynamo.reset()
model = ToyModel()
model.compile()
model(torch.randn(1, 10))
with tempfile.TemporaryDirectory() as tmpdirname:
torch.save(model.state_dict(), os.path.join(tmpdirname, "model.pt"))
loaded_model = ToyModel()
loaded_model.load_state_dict(
torch.load(os.path.join(tmpdirname, "model.pt"))
)
loaded_model(torch.randn(1, 10))
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class InPlaceCompilationTests(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
test_jit_save
|
def test_jit_save(self):
torch._dynamo.reset()
model = ToyModel()
model.compile()
model(torch.randn(1, 10))
scripted_model = torch.jit.script(model)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.jit.save(scripted_model, os.path.join(tmpdirname, "model.pt"))
loaded_model = torch.jit.load(os.path.join(tmpdirname, "model.pt"))
loaded_model(torch.randn(1, 10))
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class InPlaceCompilationTests(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
test_compilation_callback
|
def test_compilation_callback(self):
torch._dynamo.reset()
@torch._dynamo.on_compile_start
def start_callback():
print("Compilation started.")
@torch._dynamo.on_compile_end
def end_callback():
print("Compilation ended.")
mod = ToyModel()
x = torch.randn(10, 10)
with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
opt_mod = torch.compile(backend="eager", fullgraph=True)(mod)
opt_mod(x)
printed_output = mock_stdout.getvalue().strip()
self.assertEqual(printed_output, "Compilation started.\nCompilation ended.")
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class InPlaceCompilationTests(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
end_callback
|
def end_callback():
print("Compilation ended.")
mod = ToyModel()
x = torch.randn(10, 10)
with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
opt_mod = torch.compile(backend="eager", fullgraph=True)(mod)
opt_mod(x)
printed_output = mock_stdout.getvalue().strip()
self.assertEqual(printed_output, "Compilation started.\nCompilation ended.")
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_compile.py
|
test_compile_eager_options
|
def test_compile_eager_options(self):
@torch.compile(backend="eager", options={"foo": 2})
def f(x):
return x + x
f(torch.randn(3))
@torch.compile(backend="aot_eager", options={"foo": 2})
def g(x):
return x + x
g(torch.randn(3))
|
import inspect
import io
import os
import tempfile
from unittest.mock import patch
import torch
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter
class InPlaceCompilationTests(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
nothing
|
def nothing(*args):
pass
code = bytecode_transformation.transform_code_object(fn.__code__, nothing)
self.assertEqual(code.co_exceptiontable, fn.__code__.co_exceptiontable)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
nothing
|
def nothing(*args):
pass
code = bytecode_transformation.transform_code_object(fn.__code__, nothing)
self.assertEqual(code.co_exceptiontable, fn.__code__.co_exceptiontable)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
test_remove_dead_code_with_exn_table_entries
|
def test_remove_dead_code_with_exn_table_entries(self):
create_instruction = bytecode_transformation.create_instruction
target1 = create_instruction("NOP")
target2 = create_instruction("NOP")
target3 = create_instruction("NOP")
exn_start = create_instruction("NOP")
exn_end = create_instruction("NOP")
insts = [
create_instruction("JUMP_FORWARD", target=target1),
exn_start, # dead
target1,
create_instruction("JUMP_FORWARD", target=target3),
exn_end, # dead
target2,
target3,
]
exn_start.exn_tab_entry = bytecode_transformation.InstructionExnTabEntry(
exn_start, exn_end, target2, 0, True
)
bytecode_transformation.propagate_inst_exn_table_entries(insts)
insts = bytecode_analysis.remove_dead_code(insts)
self.assertEqual(len(insts), 5)
self.assertNotIn(exn_start, insts)
self.assertNotIn(exn_end, insts)
self.assertIn(target2, insts)
self.assertIn(target3, insts)
bytecode_transformation.update_offsets(insts)
tab = bytecode_transformation.compute_exception_table(insts)
self.assertEqual(len(tab), 1)
self.assertEqual(tab[0].start, 2)
self.assertEqual(tab[0].end, 4)
self.assertEqual(tab[0].target, 6)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
class BytecodeTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
test_bytecode_from_template_noprefix
|
def test_bytecode_from_template_noprefix(self):
# Test that 3.11+ prefix instructions are removed
def gen_fn():
cl = None
def fn():
return cl
return fn
fn = gen_fn()
dis_insts = list(dis.get_instructions(fn))
names = {inst.opname for inst in dis_insts}
self.assertIn("RESUME", names)
self.assertIn("COPY_FREE_VARS", names)
insts = bytecode_transformation.bytecode_from_template(fn)
names = {inst.opname for inst in insts}
self.assertNotIn("RESUME", names)
self.assertNotIn("COPY_FREE_VARS", names)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
class BytecodeTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
gen_fn
|
def gen_fn():
cl = None
def fn():
return cl
return fn
fn = gen_fn()
dis_insts = list(dis.get_instructions(fn))
names = {inst.opname for inst in dis_insts}
self.assertIn("RESUME", names)
self.assertIn("COPY_FREE_VARS", names)
insts = bytecode_transformation.bytecode_from_template(fn)
names = {inst.opname for inst in insts}
self.assertNotIn("RESUME", names)
self.assertNotIn("COPY_FREE_VARS", names)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
test_bytecode_from_template_noreturn_const
|
def test_bytecode_from_template_noreturn_const(self):
# Test 3.12+ RETURN_CONST
def fn():
if x:
return 1
return 0
dis_insts = list(dis.get_instructions(fn))
dis_return_consts = list(
filter(lambda x: x.opname == "RETURN_CONST", dis_insts)
)
self.assertGreater(len(dis_return_consts), 1)
self.assertTrue(dis_insts[-1].opname == "RETURN_CONST")
insts = bytecode_transformation.bytecode_from_template(fn, noprefix=False)
self.assertEqual(insts[-1].opname, "NOP")
insts_i = 0
for i, inst in enumerate(dis_insts):
if inst.opname == "RETURN_CONST":
self.assertEqual(insts[insts_i].opname, "LOAD_CONST")
insts_i += 1
if insts_i != len(insts) - 1:
self.assertIn("JUMP", insts[insts_i].opname)
self.assertIs(insts[insts_i].target, insts[-1])
insts_i += 1
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
class BytecodeTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
hook
|
def hook(code, out_code):
print(code)
print(out_code)
return code
torch._dynamo.reset()
handle = torch._dynamo.convert_frame.register_bytecode_hook(hook)
try:
opt_fn = torch.compile(fn)
for i in range(2, 12):
opt_fn(torch.randn(i), torch.randn(i))
finally:
handle.remove()
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
fn
|
def fn():
a = 10
b = 20
# prevent LOAD_FAST_LOAD_FAST in 3.13 by wrapping b with g()
c = a + g(b)
f = "linetable_writer"
return f"Test if {f} generates correct co_linetable: {c}"
keys = bytecode_transformation.get_code_keys()
code_options = {k: getattr(fn.__code__, k) for k in keys}
result = bytecode_transformation.clean_and_assemble_instructions(
bytecode_transformation.cleaned_instructions(fn.__code__),
keys,
code_options,
)
l1, l2 = list(fn.__code__.co_positions()), list(result[1].co_positions())
self.assertEqual(len(l1), len(l2))
for p1, p2 in zip(l1, l2):
self.assertEqual(p1, p2)
# TODO co_lnotab is deprecated in 3.12 and will be removed in 3.14
# In 3.11+,. it is computed lazily from other linetable attributes (e.g. co_linetable),
# so we do not set this attribute ourselves.
self.assertEqual(fn.__code__.co_lnotab, result[1].co_lnotab)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_bytecode_utils.py
|
f
|
def f(x, y):
z = 1
if x is None:
z *= 2
if y is not None:
z *= 3
return z
opt_f = torch._dynamo.optimize("eager", nopython=True)(f)
self.assertEqual(opt_f(None, torch.ones(2)), 6)
if sys.version_info >= (3, 11):
insts = bytecode_transformation.cleaned_instructions(f.__code__)
for inst in insts:
self.assertNotIn("_NONE", inst.opname)
|
import collections
import dis
import sys
import unittest
import torch
import torch._dynamo.test_case
from torch._dynamo import bytecode_analysis, bytecode_transformation
from torch._dynamo.testing import skipIfNotPy311, skipIfNotPy312
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.