library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
grad_with_create_graph
|
def grad_with_create_graph(mod, x, target):
y = mod(x, target)
# Set create_graph=True to ensure that the sequence_nr
# for backward ops continues to count down.
(gx,) = torch.autograd.grad(
y[0], x, create_graph=True, grad_outputs=grad_output
)
return gx
x = torch.rand(100, 16, 32, 32, requires_grad=True)
target = torch.rand(1)
mod = Model()
args = [mod, x, target]
grad_output = torch.tensor(1.0, requires_grad=True)
compiled_f1 = torch.compile(backend="aot_eager")(grad_with_create_graph)
model_instance = compiled_f1
with profile(
activities=[torch.profiler.ProfilerActivity.CPU],
record_shapes=True,
) as kineto_prof:
res = model_instance(*args)
bwd_set = set()
prof_str = "SeqNr|Thread|FwdThread|Name\n"
for event in kineto_prof.events():
if event.sequence_nr >= 0:
prof_str = (
prof_str + f"{event.sequence_nr}|{event.thread}"
f"|{event.fwd_thread}|{event.name}|\n"
)
if re.search(r"Backward[01]", event.name):
bwd_set.add(event.sequence_nr)
self.assertTrue(len(bwd_set), 13)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
test_aot_grad_mode_mutation
|
def test_aot_grad_mode_mutation(self):
for compiler in ["aot_eager", "inductor"]:
def f(x):
y = x * x
torch.set_grad_enabled(False)
return y.clone(), y
f_compiled = torch.compile(f, backend=compiler, fullgraph=True)
torch.set_grad_enabled(True)
x = torch.ones(3, requires_grad=True) * 3
y_ref = f(x)
self.assertEqual(torch.is_grad_enabled(), False)
torch.set_grad_enabled(True)
y = f_compiled(x)
self.assertEqual(torch.is_grad_enabled(), False)
torch.set_grad_enabled(True)
self.assertEqual(y_ref, y)
self.assertIsNone(y_ref[0].grad_fn)
self.assertIsNone(y[0].grad_fn)
self.assertIsNotNone(y_ref[1].grad_fn)
self.assertIsNotNone(y[1].grad_fn)
# Check that the grad computed for the inputs, given the input, is the same
# The tangent to `y[0]`, which has grad_required=False, is irrelevant
self.assertEqual(
sum(y_ref[1].grad_fn(torch.tensor([-1.0, 2.0, 0.0]))),
sum(
x
for x in y[1].grad_fn.apply(None, torch.tensor([-1.0, 2.0, 0.0]))
if x is not None
),
)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
test_aot_autograd_raises_invalid_leaf_set
|
def test_aot_autograd_raises_invalid_leaf_set(self):
@torch.compile
def f(x):
x.set_(torch.ones(2))
# We still want to make sure that this raises
x = torch.ones(2, requires_grad=True)
with self.assertRaisesRegex(
RuntimeError, "is being used in an in-place operation"
):
f(x)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_data_ptr_access_copy
|
def test_data_ptr_access_copy(self):
import torch._functorch.config as _config
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
with FakeTensorMode():
x = torch.randn(3)
y = copy.copy(x)
self.assertEqual(y.shape, x.shape)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
test_data_ptr_access_fails_in_forward
|
def test_data_ptr_access_fails_in_forward(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define("mylib::foo", "(Tensor x) -> Tensor", lib=lib)
@torch.library.impl("mylib::foo", "CompositeImplicitAutograd", lib=lib)
def _(x):
x.data_ptr()
return x.clone()
x = torch.randn(3)
def data_ptr_graph_input(x):
r0 = torch.ops.mylib.foo(x)
return r0
def data_ptr_graph_intermediate(x):
y = x.clone()
r0 = torch.ops.mylib.foo(y)
return r0
tests = [data_ptr_graph_input, data_ptr_graph_intermediate]
def ctx():
return self.assertRaisesRegex(
RuntimeError, "Cannot access data pointer"
)
for f in tests:
with ctx():
make_fx(f, tracing_mode="fake")(x)
with ctx():
make_fx(f, tracing_mode="symbolic")(x)
with ctx():
torch.compile(f, backend="eager", fullgraph=True)(x)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
_
|
def _(x):
x.data_ptr()
return x.clone()
x = torch.randn(3)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
expect_miss
|
def expect_miss(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
0,
)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
return res
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
expect_hit
|
def expect_hit(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
0,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"],
1,
)
return res
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
expect_guard_miss
|
def expect_guard_miss(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
1,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"],
0,
)
return res
compiled_fn = torch.compile(fn, dynamic=True)
a_shape = (5, 6)
b_shape = (7, 8)
a = torch.rand(a_shape, device=device, dtype=dtype)
b = torch.rand(b_shape, device=device, dtype=dtype)
res1 = expect_miss(compiled_fn, a, b)
# Same shape, should cache hit
a2 = a.detach().clone()
b2 = b.detach().clone()
res2 = expect_hit(compiled_fn, a2, b2)
self.assertEqual(res1, res2)
# By changing the shape greatly, despite the same exact input
# graph, inductor should report a guard miss, leading
# to a cache miss on our end.
a_shape = (5, 6)
b_shape = (47000, 47001)
a3 = torch.rand(a_shape, device=device, dtype=dtype)
b3 = torch.rand(b_shape, device=device, dtype=dtype)
expect_guard_miss(compiled_fn, a3, b3)
# Wobble the shape a bit, but not enough
# to trigger a guard miss (since 6, 7 is still less than int32)
# Should result in a cache hit
a_shape = (6, 7)
b_shape = (47000, 47001)
a4 = torch.rand(a_shape, device=device, dtype=dtype)
b4 = torch.rand(b_shape, device=device, dtype=dtype)
expect_hit(compiled_fn, a4, b4)
# Change the shape back to the original,
# FXGraphCache should hit because it stores
# multiple entries
a_shape = (5, 6)
b_shape = (7, 8)
a5 = torch.rand(a_shape, device=device, dtype=dtype)
b5 = torch.rand(b_shape, device=device, dtype=dtype)
expect_hit(compiled_fn, a5, b5)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
test_split_with_sizes_aot_autograd_cleans_up_traceback_meta
|
def test_split_with_sizes_aot_autograd_cleans_up_traceback_meta(self):
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
def fn(result, split_sizes):
rs = torch.ops.aten.split_with_sizes(result, split_sizes.tolist())
return rs
example_inputs = (
torch.randn(32, requires_grad=True),
torch.tensor((7, 16, 9)),
)
outs = fn(*example_inputs)
setup_stacktrace_preservation_hooks([out.grad_fn for out in outs])
with fx_traceback.preserve_node_meta():
(outs[0].sum() + outs[1].sum() + outs[2].sum()).backward()
self.assertNotIn("grad_fn_seq_nr", fx_traceback.current_meta)
self.assertNotIn("in_grad_fn", fx_traceback.current_meta)
# https://github.com/pytorch/pytorch/issues/110121
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_aot_export_joint_simple_repro
|
def test_aot_export_joint_simple_repro(self):
class Mod(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.linear = torch.nn.Linear(5, 7)
def forward(self, x):
return self.linear(x)
def mini_backend(gm, sample_inputs):
from torch._functorch.aot_autograd import aot_export_joint_simple
fake_mode = torch._dynamo.utils.detect_fake_mode(sample_inputs)
with patch.object(fake_mode, "allow_non_fake_inputs", True), fake_mode:
return aot_export_joint_simple(gm, sample_inputs, trace_joint=False)
sample_inputs = [torch.rand((3, 4, 5))]
model = Mod()
m_compiled = torch.compile(model, backend=mini_backend)
out_ref = model(*sample_inputs)
out_test = m_compiled(*sample_inputs)
self.assertEqual(out_ref, out_test)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
mini_backend
|
def mini_backend(gm, sample_inputs):
from torch._functorch.aot_autograd import aot_export_joint_simple
fake_mode = torch._dynamo.utils.detect_fake_mode(sample_inputs)
with patch.object(fake_mode, "allow_non_fake_inputs", True), fake_mode:
return aot_export_joint_simple(gm, sample_inputs, trace_joint=False)
sample_inputs = [torch.rand((3, 4, 5))]
model = Mod()
m_compiled = torch.compile(model, backend=mini_backend)
out_ref = model(*sample_inputs)
out_test = m_compiled(*sample_inputs)
self.assertEqual(out_ref, out_test)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
test_eager_sequence_nr
|
def test_eager_sequence_nr(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(
in_channels=16,
out_channels=16,
kernel_size=(1, 1),
stride=1,
padding="same",
bias=True,
)
self.bn1 = torch.nn.BatchNorm2d(num_features=16)
self.relu1 = torch.nn.ReLU()
self.fc1 = torch.nn.Linear(in_features=1638400, out_features=1)
self.loss_fn = torch.nn.L1Loss()
def forward(self, x, target):
y = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = x + y
x = torch.flatten(x)
x = self.fc1(x)
output = self.loss_fn(x, target)
return (output,)
def grad_with_create_graph(mod, x, target):
y = mod(x, target)
# Set create_graph=True to ensure that the sequence_nr
# for backward ops continues to count down.
(gx,) = torch.autograd.grad(
y[0], x, create_graph=True, grad_outputs=grad_output
)
return gx
x = torch.rand(100, 16, 32, 32, requires_grad=True)
target = torch.rand(1)
mod = Model()
args = [mod, x, target]
grad_output = torch.tensor(1.0, requires_grad=True)
compiled_f1 = torch.compile(backend="aot_eager")(grad_with_create_graph)
model_instance = compiled_f1
with profile(
activities=[torch.profiler.ProfilerActivity.CPU],
record_shapes=True,
) as kineto_prof:
res = model_instance(*args)
bwd_set = set()
prof_str = "SeqNr|Thread|FwdThread|Name\n"
for event in kineto_prof.events():
if event.sequence_nr >= 0:
prof_str = (
prof_str + f"{event.sequence_nr}|{event.thread}"
f"|{event.fwd_thread}|{event.name}|\n"
)
if re.search(r"Backward[01]", event.name):
bwd_set.add(event.sequence_nr)
self.assertTrue(len(bwd_set), 13)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
__init__
|
def __init__(self) -> None:
super().__init__()
self.fn = CustomFunc1.apply
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class Module2(torch.nn.Module):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_autograd_function_equivalence
|
def test_autograd_function_equivalence(self):
for grad in [True, False]:
for i in range(1, 5):
torch._dynamo.reset()
model = globals()[f"Module{i}"]()
opt_model = torch._dynamo.optimize("eager")(model)
self.assertTrue(
torch.allclose(
opt_model(torch.ones(2, 3, requires_grad=grad)),
torch.tensor([2.0], requires_grad=grad),
)
)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_autograd_function_has_graph_break
|
def test_autograd_function_has_graph_break(self):
for grad in [True, False]:
x = torch.randn(10, requires_grad=grad)
for model in [Module5(), Module6()]:
torch._dynamo.reset()
cnts = torch._dynamo.testing.CompileCounter()
opt_model = torch._dynamo.optimize(cnts)(model)
for _ in range(3):
ref = model(x)
res = opt_model(x)
self.assertTrue(torch.allclose(ref, res))
self.assertEqual(cnts.frame_count, 2)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
test_nn_module_with_params_global_constant
|
def test_nn_module_with_params_global_constant(self):
class MyMod(torch.nn.Module):
CONSTANT = torch.tensor([[2, 2], [2, 2]])
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.randn([2, 2]))
def forward(self, x):
return x.sin() + self.param + MyMod.CONSTANT
with torch.no_grad():
compiled_fn = torch.compile(MyMod(), backend="inductor", fullgraph=True)
res1 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self._clear_dynamo_and_codecache()
res2 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self.assertEqual(res1, res2)
# Edit the "constant". We'll get a cache hit,
# but it should result in a different result when run
# because MyMod.CONSTANT is an input to the graph
MyMod.CONSTANT = torch.tensor([[3, 3], [3, 3]])
self._clear_dynamo_and_codecache()
res3 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self.assertNotEqual(res1, res3)
self.assertEqual(res1, res3.sub(torch.ones(2, 2)))
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@instantiate_parametrized_tests
class AOTAutogradCacheTests(InductorTestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
forward
|
def forward(self, x):
return x.sin() + self.param + MyMod.CONSTANT
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
class MyMod(torch.nn.Module):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
default_config
|
def default_config(self):
return AOTConfig(
fw_compiler=None,
bw_compiler=None,
inference_compiler=None,
partition_fn=None,
decompositions={},
num_params_buffers=0,
aot_id=0,
keep_inference_input_mutations=False,
dynamic_shapes=True,
aot_autograd_arg_pos_to_source=None,
is_export=False,
no_tangents=False,
enable_log=False,
)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
_get_dynamo_output
|
def _get_dynamo_output(self, fn, *args, **kwargs):
# Reset dynamo between runs
torch._dynamo.reset()
fx_graph = None
example_inputs = None
def compiler(gm, inputs, **kwargs):
nonlocal fx_graph
nonlocal example_inputs
fx_graph = gm
example_inputs = inputs
return gm
g = torch.compile(fn, backend=compiler, fullgraph=True)
result = g(*args, **kwargs)
return (result, fx_graph, example_inputs)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
compiler
|
def compiler(gm, inputs, **kwargs):
nonlocal fx_graph
nonlocal example_inputs
fx_graph = gm
example_inputs = inputs
return gm
g = torch.compile(fn, backend=compiler, fullgraph=True)
result = g(*args, **kwargs)
return (result, fx_graph, example_inputs)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
gen_cache_key
|
def gen_cache_key(self, f, config, inputs=None):
if inputs is None:
inputs = [torch.ones(3)]
_, fx_g, example_inputs = self._get_dynamo_output(f, *inputs)
return autograd_cache_key(fx_g, example_inputs, config, {})
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn2
|
def fn2(x):
y = x.sin()
z = y.cos()
return z
# Make the id different, but otherwise identical
config = self.default_config()
config2 = self.default_config()
config2.aot_id = 1
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config2)
self.assertEqual(c1, c2)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn2
|
def fn2(x):
y = x.sin()
z = y.cos()
return z
# Make the id different, but otherwise identical
config = self.default_config()
config2 = self.default_config()
config2.aot_id = 1
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config2)
self.assertEqual(c1, c2)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
test_incompatible_function
|
def test_incompatible_function(self):
@torch._dynamo.allow_in_graph
class AllowInGraphFunc(torch.autograd.Function):
@staticmethod
def forward(_, x):
torch._dynamo.graph_break()
return x.sin()
def fn(x):
return AllowInGraphFunc.apply(x)
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
forward
|
def forward(self, x):
return x.sin() + self.param + MyMod.CONSTANT
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
class MyMod(torch.nn.Module):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
test_private_namespace
|
def test_private_namespace(self):
# TODO: anyone who monkeypatches a **public** function into torch namespace with @allow_in_graph
# could still break our sanity check and cache something bad. But that's an edge case we'll take the risk on.
# Monkeypatch some random private function into torch, see that it fails
@torch._dynamo.allow_in_graph
def my_private_fun(x):
return x.sin()
with patch("torch._my_priv", new=my_private_fun, create=True):
def fn(x):
return torch._my_priv(x)
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
my_private_fun
|
def my_private_fun(x):
return x.sin()
with patch("torch._my_priv", new=my_private_fun, create=True):
def fn(x):
return torch._my_priv(x)
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
test_private_builtin
|
def test_private_builtin(self):
# _foreach_add is a private torch function, but
# it's also a builtin_function_or_method, so it should be allowed to be cached
# since dynamo allows it in the graph
def fn(x, b):
y = (x, x)
return torch._foreach_add(y, b)
config = self.default_config()
r1 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 1])
r2 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 2])
self.assertNotEqual(r1, r2)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
test_nn_module_with_params
|
def test_nn_module_with_params(self):
class MyMod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.seq = torch.nn.Parameter(torch.ones((3, 3)))
def forward(self, x):
return self.seq + x
config = self.default_config()
# Different inputs and parameters, but all the same size
c1 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))])
c2 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))])
self.assertEqual(c1, c2)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
forward
|
def forward(self, x):
return x.sin() + self.param + MyMod.CONSTANT
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
class MyMod(torch.nn.Module):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
test_normal_torch_function
|
def test_normal_torch_function(self):
@torch._dynamo.allow_in_graph
def fn(x):
y = torch.sin(x)
z = torch.cos(x)
w = y + z
w.abs()
return w
config = self.default_config()
self.gen_cache_key(fn, config)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
test_donated_buffer_with_retain_or_create_graph4
|
def test_donated_buffer_with_retain_or_create_graph4(self):
# Gives non-empty bw_donated_idxs
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.zeros([3, 3]))
def forward(self, x):
return torch.nn.functional.relu(x) + self.param
inp = torch.randn(3, 3, requires_grad=True)
mod = torch.compile(Mod())
mod(inp).sum().backward()
out = mod(inp).sum()
with self.assertRaisesRegex(
RuntimeError,
r"This backward function was compiled with non-empty donated "
r"buffers which requires create_graph=False and retain_graph=False. "
r"Please keep backward\(create_graph=False, retain_graph=False\) "
r"across all backward\(\) function calls, or set "
r"torch._functorch.config.donated_buffer=False to disable "
r"donated buffer.",
):
out.backward(retain_graph=True)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
setUp
|
def setUp(self):
"""
Reset all counters and caches before each unit test
"""
super().setUp()
counters.clear()
self._clear_all_caches()
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@instantiate_parametrized_tests
class AOTAutogradCacheTests(InductorTestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
_clear_all_caches
|
def _clear_all_caches(self):
"""
Clear every cache, including AOTAutogradCache and FXCache
"""
torch._inductor.codecache.FxGraphCache.clear()
AOTAutogradCache.clear()
self._clear_dynamo_and_codecache()
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
@instantiate_parametrized_tests
class AOTAutogradCacheTests(InductorTestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
fn
|
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_once_differentiable
|
def test_once_differentiable(self):
from torch.autograd.function import once_differentiable
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
class ScaleGradient(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
@once_differentiable
def backward(ctx, grad):
return grad * 0.5
@torch.compile(backend=cnt, fullgraph=True)
def fn(x):
return ScaleGradient.apply(x)
x = torch.randn(3, requires_grad=True)
result = fn(x)
self.assertEqual(result, ScaleGradient.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
fn
|
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_classmethod
|
def test_classmethod(self):
class Shake(torch.autograd.Function):
@classmethod
def forward(cls, ctx, foo):
return foo + foo
@classmethod
def backward(cls, ctx, grad_output):
return grad_output
def f(x):
return Shake.apply(x)
x = torch.randn(4, 4, 4, 4, requires_grad=True)
opt_m = torch.compile(backend="eager")(f)
opt_m(x)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_linear_setup_context
|
def test_linear_setup_context(self):
model = ModuleLinear()
opt_model = torch._dynamo.optimize("eager", nopython=True)(model)
input = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
weight = torch.randn(3, 2, dtype=torch.double, requires_grad=True)
eager_result = model(input, weight)
optim_result = opt_model(input, weight)
self.assertEqual(optim_result, eager_result)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_materialize_grad
|
def test_materialize_grad(self):
model = MaterializingGradModule()
opt_model = torch._dynamo.optimize("eager")(model)
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
optim_result = opt_model(x)
eager_result = model(x)
self.assertEqual(optim_result, eager_result)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_print_in_bwd
|
def test_print_in_bwd(self):
model = CustomFuncBwdPrintModule()
opt_model = torch._dynamo.optimize("eager", nopython=True)(model)
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
with self.assertRaisesRegex(torch._dynamo.exc.Unsupported, "builtin: print"):
opt_model(x)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_stride_in_bwd
|
def test_stride_in_bwd(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
model = CustomFuncStrideModule()
opt_model = torch.compile(backend=cnt)(model)
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
ref = model(x)
res = opt_model(x)
self.assertEqual(ref, res)
self.assertEqual(cnt.frame_count, 1)
# graph break: Illegal getattr invocation stride in strict mod.
self.assertEqual(
list(torch._dynamo.utils.counters["graph_break"].values()), [1]
)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_enum_arg
|
def test_enum_arg(self):
from enum import Enum
class SomeEnum(Enum):
A = 0
B = 1
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, e):
if e is SomeEnum.A:
return x.sin()
else:
return x.cos()
@staticmethod
def backward(ctx, g):
return g
@torch.compile(backend="eager", fullgraph=True)
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_save_for_bwd
|
def test_save_for_bwd(self):
model = SaveForBwdModule()
opt_model = torch._dynamo.optimize("eager", nopython=True)(model)
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
opt_model(x)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_allow_in_graph
|
def test_allow_in_graph(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
@torch._dynamo.allow_in_graph
class AllowInGraphFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
torch._dynamo.graph_break()
ctx.x0 = x.size(0)
return x * 2
@staticmethod
def backward(ctx, grad_out):
return grad_out * ctx.x0
@torch.compile(backend=cnt, fullgraph=True)
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
relu
|
def relu(x):
return torch.nn.functional.relu(x)
with self.assertLogs(logger_name, level="INFO") as captured:
relu(torch.rand([3, 3], requires_grad=True)).sum().backward()
if is_dynamic_shape_test(self._testMethodName):
# an extra symint exists
expected_msg = "bw_donated_idxs=[1]"
else:
expected_msg = "bw_donated_idxs=[0]"
# le is a donated buffer from relu
FileCheck().check(expected_msg).run("\n".join(captured.output))
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
g
|
def g(activation, param2):
return torch.matmul(activation, param2)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
g
|
def g(activation, param2):
return torch.matmul(activation, param2)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_function_context_save_and_mark
|
def test_function_context_save_and_mark(self):
mod = ModuleWithGradFunc(ContextSaveAndMark)
args, kwargs = ([torch.rand([1])], {})
before = mod(*args, **kwargs)
torch._dynamo.reset()
compiled_model = torch._dynamo.optimize("eager")(mod)
after = compiled_model(*args, **kwargs)
self.assertEqual(before, after)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_function_context_mark_and_save
|
def test_function_context_mark_and_save(self):
mod = ModuleWithGradFunc(ContextMarkAndSave)
args, kwargs = ([torch.rand([1])], {})
before = mod(*args, **kwargs)
torch._dynamo.reset()
compiled_model = torch._dynamo.optimize("eager")(mod)
after = compiled_model(*args, **kwargs)
self.assertEqual(before, after)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_multi_output
|
def test_multi_output(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone(), x.clone()
@staticmethod
def backward(ctx, grad1, grad2):
return grad1 + grad2
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return Foo.apply(x)
x = torch.randn(3, requires_grad=True)
result = f(x)
self.assertEqual(result, Foo.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_amp_custom_fwd_bwd
|
def test_amp_custom_fwd_bwd(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
class MyMM(torch.autograd.Function):
@staticmethod
@torch.amp.custom_fwd(device_type="cuda")
def forward(ctx, a, b):
ctx.save_for_backward(a, b)
return a.mm(b)
@staticmethod
@torch.amp.custom_bwd(device_type="cuda")
def backward(ctx, grad):
a, b = ctx.saved_tensors
return grad.mm(b.t()), a.t().mm(grad)
@torch.compile(backend=cnt, fullgraph=True)
def fn(a, b):
return MyMM.apply(a, b)
a = torch.randn([64, 64], dtype=torch.float32, requires_grad=True)
grad = a.clone()
res = fn(a, a)
res.backward(grad)
self.assertEqual(res, MyMM.apply(a, a))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
data_ptr_graph_input
|
def data_ptr_graph_input(x):
r0 = torch.ops.mylib.foo(x)
return r0
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
data_ptr_graph_intermediate
|
def data_ptr_graph_intermediate(x):
y = x.clone()
r0 = torch.ops.mylib.foo(y)
return r0
tests = [data_ptr_graph_input, data_ptr_graph_intermediate]
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
ctx
|
def ctx():
return self.assertRaisesRegex(
RuntimeError, "Cannot access data pointer"
)
for f in tests:
with ctx():
make_fx(f, tracing_mode="fake")(x)
with ctx():
make_fx(f, tracing_mode="symbolic")(x)
with ctx():
torch.compile(f, backend="eager", fullgraph=True)(x)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
backward
|
def backward(ctx, grad):
(x,) = ctx.saved_tensors
return x, grad
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Test(torch.autograd.Function):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
_
|
def _(x):
x.data_ptr()
return x.clone()
x = torch.randn(3)
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_autograd_function.py
|
fn
|
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
test_set_materialize_grads_no_graph_break
|
def test_set_materialize_grads_no_graph_break(self):
class MulY(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.set_materialize_grads(True)
return x * 3
@staticmethod
def backward(ctx, grad_out):
return grad_out * 3
@torch.compile(backend="eager", fullgraph=True)
def f(x):
return MulY.apply(x)
x = torch.tensor(2.0, requires_grad=True)
result = f(x)
result.sum().backward()
self.assertEqual(result, MulY.apply(x))
self.assertEqual(x.grad, 3.0)
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
f
|
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_autograd_function.py
|
backward
|
def backward(ctx, grad_output):
return grad_output
|
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
from enum import Enum
from torch.autograd.function import once_differentiable
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch.autograd import Function
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.