library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/distributions/test_distributions.py
|
test_lazy_probs_initialization
|
def test_lazy_probs_initialization(self):
for Dist, params in self.examples:
param = params[0].copy()
if 'probs' not in param:
continue
dist = Dist(**param)
dist.sample()
message = 'Failed for {} example 0/{}'.format(Dist.__name__, len(params))
self.assertNotIn('logits', dist.__dict__, msg=message)
try:
dist.enumerate_support()
except NotImplementedError:
pass
self.assertNotIn('logits', dist.__dict__, msg=message)
batch_shape, event_shape = dist.batch_shape, dist.event_shape
self.assertNotIn('logits', dist.__dict__, msg=message)
|
def test_lazy_probs_initialization(self):
for Dist, params in self.examples:
param = params[0].copy()
if "probs" not in param:
continue
dist = Dist(**param)
dist.sample()
message = f"Failed for {Dist.__name__} example 0/{len(params)}"
self.assertNotIn("logits", dist.__dict__, msg=message)
try:
dist.enumerate_support()
except NotImplementedError:
pass
self.assertNotIn("logits", dist.__dict__, msg=message)
batch_shape, event_shape = dist.batch_shape, dist.event_shape
self.assertNotIn("logits", dist.__dict__, msg=message)
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
from torch import inf, nan
from torch.testing._internal.common_utils import \
(TestCase, run_tests, set_rng_seed, TEST_WITH_UBSAN, load_tests,
gradcheck, skipIfTorchDynamo)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.autograd import grad
import torch.autograd.forward_ad as fwAD
from torch.autograd.functional import jacobian
from torch.distributions import (Bernoulli, Beta, Binomial, Categorical,
Cauchy, Chi2, ContinuousBernoulli, Dirichlet,
Distribution, Exponential, ExponentialFamily,
FisherSnedecor, Gamma, Geometric, Gumbel,
HalfCauchy, HalfNormal, Independent, Kumaraswamy,
LKJCholesky, Laplace, LogisticNormal,
LogNormal, LowRankMultivariateNormal,
MixtureSameFamily, Multinomial, MultivariateNormal,
NegativeBinomial, Normal,
OneHotCategorical, OneHotCategoricalStraightThrough,
Pareto, Poisson, RelaxedBernoulli, RelaxedOneHotCategorical,
StudentT, TransformedDistribution, Uniform,
VonMises, Weibull, Wishart, constraints, kl_divergence)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (AffineTransform, CatTransform, ExpTransform,
StackTransform, identity_transform)
from torch.distributions.utils import (probs_to_logits, lazy_property, tril_matrix_to_vec,
vec_to_tril_matrix)
from torch.nn.functional import softmax
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.stats
import scipy.special
Example = namedtuple('Example', ['Dist', 'params'])
EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
]),
Example(Geometric, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
]),
Example(Beta, [
{
'concentration1': torch.randn(2, 3).exp().requires_grad_(),
'concentration0': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration1': torch.randn(4).exp().requires_grad_(),
'concentration0': torch.randn(4).exp().requires_grad_(),
},
]),
Example(Categorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(Multinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': 1.0},
{'loc': torch.tensor([0.0]), 'scale': 1.0},
{'loc': torch.tensor([[0.0], [0.0]]),
'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(Chi2, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(StudentT, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(Dirichlet, [
{'concentration': torch.randn(2, 3).exp().requires_grad_()},
{'concentration': torch.randn(4).exp().requires_grad_()},
]),
Example(Exponential, [
{'rate': torch.randn(5, 5).abs().requires_grad_()},
{'rate': torch.randn(1).abs().requires_grad_()},
]),
Example(FisherSnedecor, [
{
'df1': torch.randn(5, 5).abs().requires_grad_(),
'df2': torch.randn(5, 5).abs().requires_grad_(),
},
{
'df1': torch.randn(1).abs().requires_grad_(),
'df2': torch.randn(1).abs().requires_grad_(),
},
{
'df1': torch.tensor([1.0]),
'df2': 1.0,
}
]),
Example(Gamma, [
{
'concentration': torch.randn(2, 3).exp().requires_grad_(),
'rate': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration': torch.randn(1).exp().requires_grad_(),
'rate': torch.randn(1).exp().requires_grad_(),
},
]),
Example(Gumbel, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
]),
Example(HalfCauchy, [
{'scale': 1.0},
{'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.randn(5, 5).abs().requires_grad_()},
{'scale': torch.randn(1).abs().requires_grad_()},
{'scale': torch.tensor([1e-5, 1e-5], requires_grad=True)}
]),
Example(Independent, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 0,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 1,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 3,
},
]),
Example(Kumaraswamy, [
{
'concentration1': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
'concentration0': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
},
{
'concentration1': torch.rand(4).uniform_(1, 2).requires_grad_(),
'concentration0': torch.rand(4).uniform_(1, 2).requires_grad_(),
},
]),
Example(LKJCholesky, [
{
'dim': 2,
'concentration': 0.5
},
{
'dim': 3,
'concentration': torch.tensor([0.5, 1., 2.]),
},
{
'dim': 100,
'concentration': 4.
},
]),
Example(Laplace, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogisticNormal, [
{
'loc': torch.randn(5, 5).requires_grad_(),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1).requires_grad_(),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LowRankMultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'cov_factor': torch.randn(5, 2, 1, requires_grad=True),
'cov_diag': torch.tensor([2.0, 0.25], requires_grad=True),
},
{
'loc': torch.randn(4, 3, requires_grad=True),
'cov_factor': torch.randn(3, 2, requires_grad=True),
'cov_diag': torch.tensor([5.0, 1.5, 3.], requires_grad=True),
}
]),
Example(MultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
},
{
'loc': torch.randn(2, 3, requires_grad=True),
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
},
{
'loc': torch.randn(5, 3, 2, requires_grad=True),
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
},
{
'loc': torch.tensor([1.0, -1.0]),
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
},
]),
Example(Normal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 1.0,
'alpha': 1.0
},
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'alpha': torch.randn(5, 5).abs().requires_grad_()
},
{
'scale': torch.tensor([1.0]),
'alpha': 1.0
}
]),
Example(Poisson, [
{
'rate': torch.randn(5, 5).abs().requires_grad_(),
},
{
'rate': torch.randn(3).abs().requires_grad_(),
},
{
'rate': 0.2,
},
{
'rate': torch.tensor([0.0], requires_grad=True),
},
{
'rate': 0.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([0.3]),
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([-2.0, 2.0, 1.0, 5.0])
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]])
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([[-2.0, 2.0], [1.0, 5.0]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': [],
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': ExpTransform(),
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': [AffineTransform(torch.randn(3, 5), torch.randn(3, 5)),
ExpTransform()],
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': AffineTransform(1, 2),
},
{
'base_distribution': Uniform(torch.tensor(1e8).log(), torch.tensor(1e10).log()),
'transforms': ExpTransform(),
},
]),
Example(Uniform, [
{
'low': torch.zeros(5, 5, requires_grad=True),
'high': torch.ones(5, 5, requires_grad=True),
},
{
'low': torch.zeros(1, requires_grad=True),
'high': torch.ones(1, requires_grad=True),
},
{
'low': torch.tensor([1.0, 1.0], requires_grad=True),
'high': torch.tensor([2.0, 3.0], requires_grad=True),
},
]),
Example(Weibull, [
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'concentration': torch.randn(1).abs().requires_grad_()
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
'df': torch.tensor([5., 4], requires_grad=True),
},
{
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
'df': torch.tensor([5., 3.5, 3], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': torch.tensor([3.0]),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': 3.0,
},
]),
Example(MixtureSameFamily, [
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': Normal(torch.randn(5, requires_grad=True),
torch.rand(5, requires_grad=True)),
},
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': MultivariateNormal(
loc=torch.randn(5, 2, requires_grad=True),
covariance_matrix=torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True)),
},
]),
Example(VonMises, [
{
'loc': torch.tensor(1.0, requires_grad=True),
'concentration': torch.tensor(10.0, requires_grad=True)
},
{
'loc': torch.tensor([0.0, math.pi / 2], requires_grad=True),
'concentration': torch.tensor([1.0, 10.0], requires_grad=True)
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
])
]
BAD_EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
]),
Example(Beta, [
{
'concentration1': torch.tensor([0.0], requires_grad=True),
'concentration0': torch.tensor([0.0], requires_grad=True),
},
{
'concentration1': torch.tensor([-1.0], requires_grad=True),
'concentration0': torch.tensor([-2.0], requires_grad=True),
},
]),
Example(Geometric, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.3], requires_grad=True)},
{'probs': 1.00000001},
]),
Example(Categorical, [
{'probs': torch.tensor([[-0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[-1.0, 10.0], [0.0, -1.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': -1.0},
{'loc': torch.tensor([0.0]), 'scale': 0.0},
{'loc': torch.tensor([[0.0], [-2.0]]),
'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(Chi2, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(StudentT, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(Dirichlet, [
{'concentration': torch.tensor([0.], requires_grad=True)},
{'concentration': torch.tensor([-2.], requires_grad=True)}
]),
Example(Exponential, [
{'rate': torch.tensor([0., 0.], requires_grad=True)},
{'rate': torch.tensor([-2.], requires_grad=True)}
]),
Example(FisherSnedecor, [
{
'df1': torch.tensor([0., 0.], requires_grad=True),
'df2': torch.tensor([-1., -100.], requires_grad=True),
},
{
'df1': torch.tensor([1., 1.], requires_grad=True),
'df2': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gamma, [
{
'concentration': torch.tensor([0., 0.], requires_grad=True),
'rate': torch.tensor([-1., -100.], requires_grad=True),
},
{
'concentration': torch.tensor([1., 1.], requires_grad=True),
'rate': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gumbel, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(HalfCauchy, [
{'scale': -1.0},
{'scale': 0.0},
{'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.tensor([0., 1.], requires_grad=True)},
{'scale': torch.tensor([1., -1.], requires_grad=True)},
]),
Example(LKJCholesky, [
{
'dim': -2,
'concentration': 0.1
},
{
'dim': 1,
'concentration': 2.,
},
{
'dim': 2,
'concentration': 0.,
},
]),
Example(Laplace, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(MultivariateNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
},
]),
Example(Normal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, -1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 0.0,
'alpha': 0.0
},
{
'scale': torch.tensor([0.0, 0.0], requires_grad=True),
'alpha': torch.tensor([-1e-5, 0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0]),
'alpha': -1.0
}
]),
Example(Poisson, [
{
'rate': torch.tensor([-0.1], requires_grad=True),
},
{
'rate': -1.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([1.5], requires_grad=True),
'probs': torch.tensor([1.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([-1.0]),
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[-0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[-1.0, 0.0], [-1.0, 1.1]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(0, 1),
'transforms': lambda x: x,
},
{
'base_distribution': Normal(0, 1),
'transforms': [lambda x: x],
},
]),
Example(Uniform, [
{
'low': torch.tensor([2.0], requires_grad=True),
'high': torch.tensor([2.0], requires_grad=True),
},
{
'low': torch.tensor([0.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
},
{
'low': torch.tensor([1.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
}
]),
Example(Weibull, [
{
'scale': torch.tensor([0.0], requires_grad=True),
'concentration': torch.tensor([0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0], requires_grad=True),
'concentration': torch.tensor([-1.0], requires_grad=True)
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
'df': torch.tensor([1.5], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': 3.,
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
])
]
class TestLazyLogitsInitialization(DistributionsTestCase):
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
import torch.autograd.forward_ad as fwAD
from torch import inf, nan
from torch.autograd import grad
from torch.autograd.functional import jacobian
from torch.distributions import (
Bernoulli,
Beta,
Binomial,
Categorical,
Cauchy,
Chi2,
constraints,
ContinuousBernoulli,
Dirichlet,
Distribution,
Exponential,
ExponentialFamily,
FisherSnedecor,
Gamma,
Geometric,
Gumbel,
HalfCauchy,
HalfNormal,
Independent,
InverseGamma,
kl_divergence,
Kumaraswamy,
Laplace,
LKJCholesky,
LogisticNormal,
LogNormal,
LowRankMultivariateNormal,
MixtureSameFamily,
Multinomial,
MultivariateNormal,
NegativeBinomial,
Normal,
OneHotCategorical,
OneHotCategoricalStraightThrough,
Pareto,
Poisson,
RelaxedBernoulli,
RelaxedOneHotCategorical,
StudentT,
TransformedDistribution,
Uniform,
VonMises,
Weibull,
Wishart,
)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (
AffineTransform,
CatTransform,
ExpTransform,
identity_transform,
StackTransform,
)
from torch.distributions.utils import (
lazy_property,
probs_to_logits,
tril_matrix_to_vec,
vec_to_tril_matrix,
)
from torch.nn.functional import softmax
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
gradcheck,
load_tests,
run_tests,
set_default_dtype,
set_rng_seed,
skipIfTorchDynamo,
TestCase,
)
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.special
import scipy.stats
Example = namedtuple("Example", ["Dist", "params"])
class TestLazyLogitsInitialization(DistributionsTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
_get_custom_policy
|
def _get_custom_policy(no_recompute_list=None, must_recompute_list=None):
def _custom_policy(ctx, func, *args, **kwargs):
if no_recompute_list is not None and func in no_recompute_list:
return CheckpointPolicy.MUST_SAVE
if must_recompute_list is not None and func in must_recompute_list:
return CheckpointPolicy.MUST_RECOMPUTE
else:
return CheckpointPolicy.PREFER_RECOMPUTE
return _custom_policy
class ActivationCheckpointingViaTagsTests(torch._dynamo.test_case.TestCase):
def _validate(self, fn, backend, *args, skip_check=False, fullgraph=True):
cloned_args = []
for arg in args:
cloned_args.append(arg.clone().detach().requires_grad_(arg.requires_grad))
torch.manual_seed(0)
expected = fn(*args)
expected.sum().backward()
torch.manual_seed(0)
result = torch.compile(fn, fullgraph=fullgraph, backend=backend)(*cloned_args)
result.sum().backward()
if not skip_check:
self.assertEqual(
result,
expected,
msg="Output mismatch between torch.compile and eager versions",
)
for arg, cloned_arg in zip(args, cloned_args):
self.assertEqual(
arg.grad,
cloned_arg.grad,
msg="Gradient mismatch between torch.compile and eager versions",
)
def _compare_orig_and_checkpointed_fns(
self, orig_fn, checkpointed_fn, *args, fullgraph=True
):
# The original version and the checkpointed version of the same function
# should produce the same outputs and the same gradients under torch.compile.
# Run original version
cloned_args_orig_fn = []
for arg in args:
cloned_args_orig_fn.append(
arg.clone().detach().requires_grad_(arg.requires_grad)
)
torch.manual_seed(0)
compiled_orig_fn = torch.compile(
orig_fn, fullgraph=fullgraph, backend="inductor"
)
result_orig_fn = compiled_orig_fn(*cloned_args_orig_fn)
result_orig_fn.sum().backward()
# Run checkpointed version
cloned_args_checkpointed_fn = []
for arg in args:
cloned_args_checkpointed_fn.append(
arg.clone().detach().requires_grad_(arg.requires_grad)
)
torch.manual_seed(0)
compiled_checkpointed_fn = torch.compile(
checkpointed_fn, fullgraph=fullgraph, backend="inductor"
)
result_checkpointed_fn = compiled_checkpointed_fn(*cloned_args_checkpointed_fn)
result_checkpointed_fn.sum().backward()
# Check that outputs and gradients are equal
self.assertEqual(
result_orig_fn,
result_checkpointed_fn,
msg="Output mismatch between the original version and the checkpointed version of the same function",
)
for cloned_arg_orig_fn, cloned_arg_checkpointed_fn in zip(
cloned_args_orig_fn, cloned_args_checkpointed_fn
):
self.assertEqual(
cloned_arg_orig_fn.grad,
cloned_arg_checkpointed_fn.grad,
msg="Gradient mismatch between the original version and the checkpointed version of the same function",
)
@requires_cuda
def test_tags_function(self):
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
@requires_cuda
def test_tags_function_via_global_checkpoint(self):
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
def fn(x, y):
# This goes through VariableBuilder
return checkpoint(gn, torch.sin(x), y, use_reentrant=True)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
@requires_cuda
def test_tags_function_with_kwargs(self):
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True, preserve_rng_state=False
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
@requires_cuda
def test_tags_sequential_layers(self):
def gn(x):
x = x.cos()
for _ in range(3):
x = torch.mm(x, x)
x = x.cos()
return x
def fn(x):
x = torch.utils.checkpoint.checkpoint(gn, x)
x = torch.utils.checkpoint.checkpoint(gn, x)
return x
x = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=6, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops,
freqs=[2, 18],
ops=[torch.ops.aten.cos.default, torch.ops.aten.mm.default],
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x)
@requires_cuda
def test_tags_multiple_checkpoints(self):
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
def fn(x, y):
x = torch.sin(x)
z = torch.utils.checkpoint.checkpoint(gn, x, y, use_reentrant=True)
x = torch.sin(z)
z = torch.utils.checkpoint.checkpoint(gn, x, y, use_reentrant=True)
return z
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=2, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=6, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
@requires_cuda
def test_tags_module(self):
class MockModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(10, 10)
def forward(self, x):
return torch.sigmoid(self.linear(x))
mod = MockModule().cuda()
def fn(x):
return torch.utils.checkpoint.checkpoint(
mod, torch.sin(x), use_reentrant=True
)
x = torch.randn(10, 10, device="cuda", requires_grad=True)
fw_compiler = functools.partial(
count_ops, freq=1, op=torch.ops.aten.sigmoid.default
)
bw_compiler = functools.partial(
count_ops, freq=1, op=torch.ops.aten.sigmoid.default
)
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x)
@requires_cuda
def test_tags_decomps(self):
# Ensures that tags are passed on through decompositions as well
class MockModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(10, 10)
def forward(self, x):
return torch.nn.functional.gelu(self.linear(x))
mod = MockModule().cuda()
def fn(x):
return torch.utils.checkpoint.checkpoint(
mod, torch.sin(x), use_reentrant=True
)
x = torch.randn(10, 10, device="cuda", requires_grad=True)
fw_compiler = functools.partial(
count_ops, freq=1, op=torch.ops.aten.erf.default
)
bw_compiler = functools.partial(
count_ops, freq=1, op=torch.ops.aten.erf.default
)
backend = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
decompositions=lambda: import_module(
"torch._inductor.compile_fx"
).select_decomp_table(),
)
self._validate(fn, backend, x)
@requires_cuda
@torch._inductor.config.patch(fallback_random=True)
def test_tags_recomputed_rand(self):
def gn(x, y):
return torch.sigmoid(torch.rand_like(x) * y) * x
def fn(x, y):
x = torch.sin(x)
x = torch.utils.checkpoint.checkpoint(gn, x, y, use_reentrant=True)
x = torch.sin(x)
z = torch.utils.checkpoint.checkpoint(gn, x, y, use_reentrant=True)
return z
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
# fw_compiler = functools.partial(count_ops, freq=2, op=torch.ops.aten.mm.default)
# bw_compiler = functools.partial(
# count_ops, freq=6, op=torch.ops.aten.mm.default
# ) # mm recomputed in the bwd
# backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
backend = "inductor"
self._validate(fn, backend, x, y)
@requires_cuda
@torch._inductor.config.patch(fallback_random=True)
def test_tags_rand(self):
def gn(x, y):
x = torch.mm(x, y)
x = torch.mm(x, y)
return x
def fn(x, y):
x = torch.sin(x)
x = torch.utils.checkpoint.checkpoint(gn, x, y, use_reentrant=True)
x = torch.sin(x)
# x = torch.utils.checkpoint.checkpoint(gn, x, y, use_reentrant=True)
return x
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
# fw_compiler = functools.partial(count_ops, freq=2, op=torch.ops.aten.mm.default)
# bw_compiler = functools.partial(
# count_ops, freq=6, op=torch.ops.aten.mm.default
# ) # mm recomputed in the bwd
# backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
# backend = "aot_eager"
backend = "inductor"
self._validate(fn, backend, x, y)
@requires_cuda
@torch._inductor.config.patch(fallback_random=True)
def test_tags_dropout(self):
# Figure out a way to test the number of inductor_random calls
class MockModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(10, 10)
self.dropout = torch.nn.Dropout(0.2)
def forward(self, x):
return self.dropout(self.linear(x))
mod = MockModule().cuda()
def fn(x):
return torch.utils.checkpoint.checkpoint(mod, x, use_reentrant=True)
x = torch.randn(10, 10, device="cuda", requires_grad=True)
backend = "inductor"
# rand decomps do not have have numerical results as eager
self._validate(fn, backend, x, skip_check=True)
@requires_cuda
def test_fallback(self):
def gn(x, y):
torch._dynamo.graph_break()
a = torch.sigmoid(torch.matmul(x, y))
torch._dynamo.graph_break()
return torch.cos(a)
def fn(x, y):
return torch.cos(checkpoint(gn, torch.sin(x), y, use_reentrant=False))
x = torch.randn(4, 4, requires_grad=True)
y = torch.randn(4, 4, requires_grad=True)
args = (x, y)
backend = "aot_eager"
cnt = CompileCounterWithBackend(backend)
expected = fn(*args)
result = torch.compile(fn, backend=cnt)(*args)
self.assertEqual(result, expected)
# One graph for torch.sin on the input, and other for torch.cos.
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(cnt.op_count, 2)
self.assertEqual(len(cnt.graphs), 2)
@requires_cuda
def test_kwargs(self):
def gn(x, y, z=None):
a = torch.matmul(x, y)
if z is not None:
return torch.matmul(a, z)
return a
def fn(x, y, z):
return torch.cos(checkpoint(gn, x, y, use_reentrant=False, z=z))
x = torch.randn(4, 4, requires_grad=True)
y = torch.randn(4, 4, requires_grad=True)
z = torch.randn(4, 4, requires_grad=True)
args = (x, y, z)
backend = "aot_eager"
cnt = CompileCounterWithBackend(backend)
expected = fn(*args)
result = torch.compile(fn, backend=cnt)(*args)
self.assertEqual(result, expected)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(len(cnt.graphs), 1)
wrap_node = find_first_node(cnt.graphs[0], tag_activation_checkpoint)
# one for checkpoint, and 3 for x, y, z
self.assertEqual(len(wrap_node.args), 4)
body_function = getattr(cnt.graphs[0], wrap_node.args[0].name)
self.assertEqual(op_count(body_function), 2)
@requires_cuda
def test_symints_location(self):
def gn(x, y):
return torch.matmul(x, torch.nn.functional.dropout(y, 0.5))
def fn(x, y):
return torch.utils.checkpoint.checkpoint(gn, x, y, use_reentrant=True)
backend = "aot_eager"
cnt = CompileCounterWithBackend(backend)
opt_fn = torch.compile(fn, backend=cnt)
x = torch.randn(4, 4, requires_grad=True)
y = torch.randn(4, 4, requires_grad=True)
args = (x, y)
expected = fn(*args)
result = opt_fn(*args)
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
args = (x, y)
expected = fn(*args)
result = opt_fn(*args)
self.assertEqual(result.shape, expected.shape)
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(len(cnt.graphs), 2)
wrap_node = find_first_node(cnt.graphs[0], tag_activation_checkpoint)
self.assertEqual(len(wrap_node.args), 3)
@requires_cuda
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
def test_compile_selective_checkpoint_must_recompute(self):
def context_fn_must_recompute_mm():
must_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(
must_recompute_list=must_recompute_list,
),
)
def context_fn_no_recompute_mm():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(
no_recompute_list=no_recompute_list,
),
)
def _test(context_fn, bw_compiler):
def gn(x):
return torch.sigmoid(torch.matmul(x, x))
def fn(x):
return torch.utils.checkpoint.checkpoint(
gn,
x,
use_reentrant=False,
context_fn=context_fn,
)
x = torch.randn(4, 4, requires_grad=True)
fw_compiler = functools.partial(
count_ops,
freq=1,
op=torch.ops.aten.mm.default,
)
backend = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
self._validate(fn, backend, x)
_test(
context_fn=context_fn_must_recompute_mm,
bw_compiler=functools.partial(
count_ops,
freq=3, # 1 matmul recompute and 2 bwd mm ops per fwd matmul, so 1 + 2 * 1 = 3)
op=torch.ops.aten.mm.default,
),
)
_test(
context_fn=context_fn_no_recompute_mm,
bw_compiler=functools.partial(
count_ops,
freq=2, # 2 bwd mm ops per fwd matmul
op=torch.ops.aten.mm.default,
),
)
@requires_cuda
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
def test_compile_selective_checkpoint_must_not_recompute_gemm(self):
def selective_checkpointing_context_fn():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(no_recompute_list=no_recompute_list)
)
def gn(x, y):
return torch.sigmoid(torch.matmul(torch.matmul(x, y), y)) * y
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn,
x,
y,
use_reentrant=False,
context_fn=selective_checkpointing_context_fn,
)
x = torch.randn(4, 4, requires_grad=True, device="cuda")
y = torch.randn(4, 4, requires_grad=True, device="cuda")
fw_compiler = functools.partial(
count_ops,
freq=2,
op=torch.ops.aten.mm.default,
)
bw_compiler = functools.partial(
count_ops,
# We would've expected 6 here
# (2 matmul recompute and 2 mm ops per fwd matmul, so 2 + 2 * 2 = 6)
# if we didn't enable selective checkpointing.
freq=4,
op=torch.ops.aten.mm.default,
)
backend = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
self._validate(fn, backend, x, y)
self._compare_orig_and_checkpointed_fns(gn, fn, x, y)
@requires_cuda
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
def test_compile_selective_checkpoint_tensor_subclass(self):
def selective_checkpointing_context_fn():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(no_recompute_list=no_recompute_list)
)
def gn(x, y):
return torch.sigmoid(torch.matmul(torch.matmul(x, y), y)) * y
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn,
x,
y,
use_reentrant=False,
context_fn=selective_checkpointing_context_fn,
)
rand_tensor = torch.randn(4, 4, requires_grad=True, device="cuda")
# tensor subclasses as inputs
x = TwoTensor(rand_tensor, rand_tensor.clone())
y = TwoTensor(rand_tensor.clone(), rand_tensor.clone())
fw_compiler = functools.partial(
count_ops,
freq=4,
op=torch.ops.aten.mm.default,
)
bw_compiler = functools.partial(
count_ops,
# We would've expected 12 here
# (4 matmul recompute and 4 mm ops per fwd matmul, so 4 + 2 * 4 = 12)
# if we didn't enable selective checkpointing.
freq=8,
op=torch.ops.aten.mm.default,
)
backend = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
self._validate(fn, backend, x, y)
self._compare_orig_and_checkpointed_fns(gn, fn, x, y)
@requires_cuda
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
def test_compile_selective_checkpoint_custom_rule(self):
def _get_custom_policy(meta):
no_recompute_list = [
torch.ops.aten.mm.default,
]
def _custom_policy(mode, func, *args, **kwargs):
mm_count_key = f"{mode}_mm_count"
if mm_count_key not in meta:
meta[mm_count_key] = 0
if func == torch.ops.aten.mm.default:
meta[mm_count_key] += 1
# Saves output of all compute ops, except second mm
# (i.e. we will hint the partitioner to recompute second mm in backward pass)
return func in no_recompute_list and not (
func == torch.ops.aten.mm.default and meta[mm_count_key] == 2
)
return _custom_policy
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
_custom_policy
|
def _custom_policy(ctx, func, *args, **kwargs):
if no_recompute_list is not None and func in no_recompute_list:
return CheckpointPolicy.MUST_SAVE
if must_recompute_list is not None and func in must_recompute_list:
return CheckpointPolicy.MUST_RECOMPUTE
else:
return CheckpointPolicy.PREFER_RECOMPUTE
return _custom_policy
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
selective_checkpointing_context_fn
|
def selective_checkpointing_context_fn():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(no_recompute_list=no_recompute_list)
)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
selective_checkpointing_context_fn
|
def selective_checkpointing_context_fn():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(no_recompute_list=no_recompute_list)
)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
selective_checkpointing_context_fn
|
def selective_checkpointing_context_fn():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(no_recompute_list=no_recompute_list)
)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
selective_checkpointing_context_fn
|
def selective_checkpointing_context_fn():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(no_recompute_list=no_recompute_list)
)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
selective_checkpointing_context_fn
|
def selective_checkpointing_context_fn():
no_recompute_list = [
torch.ops.aten.mm.default,
]
return create_selective_checkpoint_contexts(
_get_custom_policy(no_recompute_list=no_recompute_list)
)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
_custom_policy
|
def _custom_policy(ctx, func, *args, **kwargs):
if no_recompute_list is not None and func in no_recompute_list:
return CheckpointPolicy.MUST_SAVE
if must_recompute_list is not None and func in must_recompute_list:
return CheckpointPolicy.MUST_RECOMPUTE
else:
return CheckpointPolicy.PREFER_RECOMPUTE
return _custom_policy
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
parametrization
|
def parametrization(self, x):
return torch.sigmoid(torch.mul(x, x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class Parametrization(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
apply_parametrization
|
def apply_parametrization(model):
modules = list(model.modules())
for mod in modules:
params_dict = dict(mod.named_parameters(recurse=False))
for p_name, p in params_dict.items():
mod.register_parameter(p_name, nn.Parameter(p))
nn.utils.parametrize.register_parametrization(
mod, p_name, Parametrization(), unsafe=True
)
return model
class MLPModule(nn.Module):
def __init__(self) -> None:
super().__init__()
torch.manual_seed(5)
self.net1 = nn.Linear(16, 16, bias=False)
def forward(self, x):
return self.net1(x)
def reset_parameters(self):
self.net1.reset_parameters()
fw_compiler = functools.partial(
count_ops,
freqs=[1, 1],
ops=[torch.ops.aten.mul.Tensor, torch.ops.aten.sigmoid.default],
)
bw_compiler = functools.partial(
count_ops,
freqs=[
2, # 1 from mul recompute, 1 from mul backward
1,
],
ops=[torch.ops.aten.mul.Tensor, torch.ops.aten.sigmoid.default],
)
backend = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
model = MLPModule()
model = apply_parametrization(model)
model_compiled = torch.compile(
copy.deepcopy(model), backend=backend, fullgraph=True
)
input = torch.randn(8, 16, requires_grad=True)
input_compiled = copy.deepcopy(input)
out = model(input)
out.sum().backward()
out_compiled = model_compiled(input_compiled)
out_compiled.sum().backward()
self.assertEqual(out, out_compiled)
self.assertEqual(input.grad, input_compiled.grad)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
reset_parameters
|
def reset_parameters(self):
self.net1.reset_parameters()
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MLPModule(nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
gn
|
def gn(x, y):
return torch.sigmoid(torch.matmul(x, y))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributions/test_distributions.py
|
test_enumerate_support
|
def test_enumerate_support(self):
for Dist, keys, values, sample in self._examples():
# FIXME traced functions produce incorrect results
xfail = [Binomial]
if Dist in xfail:
continue
def f(*values):
param = dict(zip(keys, values))
dist = Dist(**param)
return dist.enumerate_support()
try:
traced_f = torch.jit.trace(f, values)
except NotImplementedError:
continue
# check on different data
values, sample = self._perturb(Dist, keys, values, sample)
expected = f(*values)
actual = traced_f(*values)
self.assertEqual(expected, actual,
msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual))
|
def test_enumerate_support(self):
for Dist, keys, values, sample in self._examples():
# FIXME traced functions produce incorrect results
xfail = [Binomial]
if Dist in xfail:
continue
def f(*values):
param = dict(zip(keys, values))
dist = Dist(**param)
return dist.enumerate_support()
try:
traced_f = torch.jit.trace(f, values)
except NotImplementedError:
continue
# check on different data
values, sample = self._perturb(Dist, keys, values, sample)
expected = f(*values)
actual = traced_f(*values)
self.assertEqual(
expected,
actual,
msg=f"{Dist.__name__}\nExpected:\n{expected}\nActual:\n{actual}",
)
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
from torch import inf, nan
from torch.testing._internal.common_utils import \
(TestCase, run_tests, set_rng_seed, TEST_WITH_UBSAN, load_tests,
gradcheck, skipIfTorchDynamo)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.autograd import grad
import torch.autograd.forward_ad as fwAD
from torch.autograd.functional import jacobian
from torch.distributions import (Bernoulli, Beta, Binomial, Categorical,
Cauchy, Chi2, ContinuousBernoulli, Dirichlet,
Distribution, Exponential, ExponentialFamily,
FisherSnedecor, Gamma, Geometric, Gumbel,
HalfCauchy, HalfNormal, Independent, Kumaraswamy,
LKJCholesky, Laplace, LogisticNormal,
LogNormal, LowRankMultivariateNormal,
MixtureSameFamily, Multinomial, MultivariateNormal,
NegativeBinomial, Normal,
OneHotCategorical, OneHotCategoricalStraightThrough,
Pareto, Poisson, RelaxedBernoulli, RelaxedOneHotCategorical,
StudentT, TransformedDistribution, Uniform,
VonMises, Weibull, Wishart, constraints, kl_divergence)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (AffineTransform, CatTransform, ExpTransform,
StackTransform, identity_transform)
from torch.distributions.utils import (probs_to_logits, lazy_property, tril_matrix_to_vec,
vec_to_tril_matrix)
from torch.nn.functional import softmax
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.stats
import scipy.special
Example = namedtuple('Example', ['Dist', 'params'])
EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
]),
Example(Geometric, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
]),
Example(Beta, [
{
'concentration1': torch.randn(2, 3).exp().requires_grad_(),
'concentration0': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration1': torch.randn(4).exp().requires_grad_(),
'concentration0': torch.randn(4).exp().requires_grad_(),
},
]),
Example(Categorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(Multinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': 1.0},
{'loc': torch.tensor([0.0]), 'scale': 1.0},
{'loc': torch.tensor([[0.0], [0.0]]),
'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(Chi2, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(StudentT, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(Dirichlet, [
{'concentration': torch.randn(2, 3).exp().requires_grad_()},
{'concentration': torch.randn(4).exp().requires_grad_()},
]),
Example(Exponential, [
{'rate': torch.randn(5, 5).abs().requires_grad_()},
{'rate': torch.randn(1).abs().requires_grad_()},
]),
Example(FisherSnedecor, [
{
'df1': torch.randn(5, 5).abs().requires_grad_(),
'df2': torch.randn(5, 5).abs().requires_grad_(),
},
{
'df1': torch.randn(1).abs().requires_grad_(),
'df2': torch.randn(1).abs().requires_grad_(),
},
{
'df1': torch.tensor([1.0]),
'df2': 1.0,
}
]),
Example(Gamma, [
{
'concentration': torch.randn(2, 3).exp().requires_grad_(),
'rate': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration': torch.randn(1).exp().requires_grad_(),
'rate': torch.randn(1).exp().requires_grad_(),
},
]),
Example(Gumbel, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
]),
Example(HalfCauchy, [
{'scale': 1.0},
{'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.randn(5, 5).abs().requires_grad_()},
{'scale': torch.randn(1).abs().requires_grad_()},
{'scale': torch.tensor([1e-5, 1e-5], requires_grad=True)}
]),
Example(Independent, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 0,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 1,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 3,
},
]),
Example(Kumaraswamy, [
{
'concentration1': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
'concentration0': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
},
{
'concentration1': torch.rand(4).uniform_(1, 2).requires_grad_(),
'concentration0': torch.rand(4).uniform_(1, 2).requires_grad_(),
},
]),
Example(LKJCholesky, [
{
'dim': 2,
'concentration': 0.5
},
{
'dim': 3,
'concentration': torch.tensor([0.5, 1., 2.]),
},
{
'dim': 100,
'concentration': 4.
},
]),
Example(Laplace, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogisticNormal, [
{
'loc': torch.randn(5, 5).requires_grad_(),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1).requires_grad_(),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LowRankMultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'cov_factor': torch.randn(5, 2, 1, requires_grad=True),
'cov_diag': torch.tensor([2.0, 0.25], requires_grad=True),
},
{
'loc': torch.randn(4, 3, requires_grad=True),
'cov_factor': torch.randn(3, 2, requires_grad=True),
'cov_diag': torch.tensor([5.0, 1.5, 3.], requires_grad=True),
}
]),
Example(MultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
},
{
'loc': torch.randn(2, 3, requires_grad=True),
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
},
{
'loc': torch.randn(5, 3, 2, requires_grad=True),
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
},
{
'loc': torch.tensor([1.0, -1.0]),
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
},
]),
Example(Normal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 1.0,
'alpha': 1.0
},
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'alpha': torch.randn(5, 5).abs().requires_grad_()
},
{
'scale': torch.tensor([1.0]),
'alpha': 1.0
}
]),
Example(Poisson, [
{
'rate': torch.randn(5, 5).abs().requires_grad_(),
},
{
'rate': torch.randn(3).abs().requires_grad_(),
},
{
'rate': 0.2,
},
{
'rate': torch.tensor([0.0], requires_grad=True),
},
{
'rate': 0.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([0.3]),
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([-2.0, 2.0, 1.0, 5.0])
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]])
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([[-2.0, 2.0], [1.0, 5.0]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': [],
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': ExpTransform(),
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': [AffineTransform(torch.randn(3, 5), torch.randn(3, 5)),
ExpTransform()],
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': AffineTransform(1, 2),
},
{
'base_distribution': Uniform(torch.tensor(1e8).log(), torch.tensor(1e10).log()),
'transforms': ExpTransform(),
},
]),
Example(Uniform, [
{
'low': torch.zeros(5, 5, requires_grad=True),
'high': torch.ones(5, 5, requires_grad=True),
},
{
'low': torch.zeros(1, requires_grad=True),
'high': torch.ones(1, requires_grad=True),
},
{
'low': torch.tensor([1.0, 1.0], requires_grad=True),
'high': torch.tensor([2.0, 3.0], requires_grad=True),
},
]),
Example(Weibull, [
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'concentration': torch.randn(1).abs().requires_grad_()
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
'df': torch.tensor([5., 4], requires_grad=True),
},
{
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
'df': torch.tensor([5., 3.5, 3], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': torch.tensor([3.0]),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': 3.0,
},
]),
Example(MixtureSameFamily, [
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': Normal(torch.randn(5, requires_grad=True),
torch.rand(5, requires_grad=True)),
},
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': MultivariateNormal(
loc=torch.randn(5, 2, requires_grad=True),
covariance_matrix=torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True)),
},
]),
Example(VonMises, [
{
'loc': torch.tensor(1.0, requires_grad=True),
'concentration': torch.tensor(10.0, requires_grad=True)
},
{
'loc': torch.tensor([0.0, math.pi / 2], requires_grad=True),
'concentration': torch.tensor([1.0, 10.0], requires_grad=True)
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
])
]
BAD_EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
]),
Example(Beta, [
{
'concentration1': torch.tensor([0.0], requires_grad=True),
'concentration0': torch.tensor([0.0], requires_grad=True),
},
{
'concentration1': torch.tensor([-1.0], requires_grad=True),
'concentration0': torch.tensor([-2.0], requires_grad=True),
},
]),
Example(Geometric, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.3], requires_grad=True)},
{'probs': 1.00000001},
]),
Example(Categorical, [
{'probs': torch.tensor([[-0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[-1.0, 10.0], [0.0, -1.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': -1.0},
{'loc': torch.tensor([0.0]), 'scale': 0.0},
{'loc': torch.tensor([[0.0], [-2.0]]),
'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(Chi2, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(StudentT, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(Dirichlet, [
{'concentration': torch.tensor([0.], requires_grad=True)},
{'concentration': torch.tensor([-2.], requires_grad=True)}
]),
Example(Exponential, [
{'rate': torch.tensor([0., 0.], requires_grad=True)},
{'rate': torch.tensor([-2.], requires_grad=True)}
]),
Example(FisherSnedecor, [
{
'df1': torch.tensor([0., 0.], requires_grad=True),
'df2': torch.tensor([-1., -100.], requires_grad=True),
},
{
'df1': torch.tensor([1., 1.], requires_grad=True),
'df2': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gamma, [
{
'concentration': torch.tensor([0., 0.], requires_grad=True),
'rate': torch.tensor([-1., -100.], requires_grad=True),
},
{
'concentration': torch.tensor([1., 1.], requires_grad=True),
'rate': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gumbel, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(HalfCauchy, [
{'scale': -1.0},
{'scale': 0.0},
{'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.tensor([0., 1.], requires_grad=True)},
{'scale': torch.tensor([1., -1.], requires_grad=True)},
]),
Example(LKJCholesky, [
{
'dim': -2,
'concentration': 0.1
},
{
'dim': 1,
'concentration': 2.,
},
{
'dim': 2,
'concentration': 0.,
},
]),
Example(Laplace, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(MultivariateNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
},
]),
Example(Normal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, -1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 0.0,
'alpha': 0.0
},
{
'scale': torch.tensor([0.0, 0.0], requires_grad=True),
'alpha': torch.tensor([-1e-5, 0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0]),
'alpha': -1.0
}
]),
Example(Poisson, [
{
'rate': torch.tensor([-0.1], requires_grad=True),
},
{
'rate': -1.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([1.5], requires_grad=True),
'probs': torch.tensor([1.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([-1.0]),
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[-0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[-1.0, 0.0], [-1.0, 1.1]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(0, 1),
'transforms': lambda x: x,
},
{
'base_distribution': Normal(0, 1),
'transforms': [lambda x: x],
},
]),
Example(Uniform, [
{
'low': torch.tensor([2.0], requires_grad=True),
'high': torch.tensor([2.0], requires_grad=True),
},
{
'low': torch.tensor([0.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
},
{
'low': torch.tensor([1.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
}
]),
Example(Weibull, [
{
'scale': torch.tensor([0.0], requires_grad=True),
'concentration': torch.tensor([0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0], requires_grad=True),
'concentration': torch.tensor([-1.0], requires_grad=True)
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
'df': torch.tensor([1.5], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': 3.,
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
])
]
class TestJit(DistributionsTestCase):
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
import torch.autograd.forward_ad as fwAD
from torch import inf, nan
from torch.autograd import grad
from torch.autograd.functional import jacobian
from torch.distributions import (
Bernoulli,
Beta,
Binomial,
Categorical,
Cauchy,
Chi2,
constraints,
ContinuousBernoulli,
Dirichlet,
Distribution,
Exponential,
ExponentialFamily,
FisherSnedecor,
Gamma,
Geometric,
Gumbel,
HalfCauchy,
HalfNormal,
Independent,
InverseGamma,
kl_divergence,
Kumaraswamy,
Laplace,
LKJCholesky,
LogisticNormal,
LogNormal,
LowRankMultivariateNormal,
MixtureSameFamily,
Multinomial,
MultivariateNormal,
NegativeBinomial,
Normal,
OneHotCategorical,
OneHotCategoricalStraightThrough,
Pareto,
Poisson,
RelaxedBernoulli,
RelaxedOneHotCategorical,
StudentT,
TransformedDistribution,
Uniform,
VonMises,
Weibull,
Wishart,
)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (
AffineTransform,
CatTransform,
ExpTransform,
identity_transform,
StackTransform,
)
from torch.distributions.utils import (
lazy_property,
probs_to_logits,
tril_matrix_to_vec,
vec_to_tril_matrix,
)
from torch.nn.functional import softmax
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
gradcheck,
load_tests,
run_tests,
set_default_dtype,
set_rng_seed,
skipIfTorchDynamo,
TestCase,
)
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.special
import scipy.stats
Example = namedtuple("Example", ["Dist", "params"])
class TestJit(DistributionsTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributions/test_distributions.py
|
test_icdf
|
def test_icdf(self):
for pytorch_dist, scipy_dist in self.distribution_pairs:
samples = torch.rand((5,) + pytorch_dist.batch_shape)
try:
icdf = pytorch_dist.icdf(samples)
except NotImplementedError:
continue
self.assertEqual(icdf, scipy_dist.ppf(samples), msg=pytorch_dist)
|
def test_icdf(self):
for pytorch_dist, scipy_dist in self.distribution_pairs:
samples = torch.rand((5,) + pytorch_dist.batch_shape, dtype=torch.double)
try:
icdf = pytorch_dist.icdf(samples)
except NotImplementedError:
continue
self.assertEqual(icdf, scipy_dist.ppf(samples), msg=pytorch_dist)
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
from torch import inf, nan
from torch.testing._internal.common_utils import \
(TestCase, run_tests, set_rng_seed, TEST_WITH_UBSAN, load_tests,
gradcheck, skipIfTorchDynamo)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.autograd import grad
import torch.autograd.forward_ad as fwAD
from torch.autograd.functional import jacobian
from torch.distributions import (Bernoulli, Beta, Binomial, Categorical,
Cauchy, Chi2, ContinuousBernoulli, Dirichlet,
Distribution, Exponential, ExponentialFamily,
FisherSnedecor, Gamma, Geometric, Gumbel,
HalfCauchy, HalfNormal, Independent, Kumaraswamy,
LKJCholesky, Laplace, LogisticNormal,
LogNormal, LowRankMultivariateNormal,
MixtureSameFamily, Multinomial, MultivariateNormal,
NegativeBinomial, Normal,
OneHotCategorical, OneHotCategoricalStraightThrough,
Pareto, Poisson, RelaxedBernoulli, RelaxedOneHotCategorical,
StudentT, TransformedDistribution, Uniform,
VonMises, Weibull, Wishart, constraints, kl_divergence)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (AffineTransform, CatTransform, ExpTransform,
StackTransform, identity_transform)
from torch.distributions.utils import (probs_to_logits, lazy_property, tril_matrix_to_vec,
vec_to_tril_matrix)
from torch.nn.functional import softmax
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.stats
import scipy.special
Example = namedtuple('Example', ['Dist', 'params'])
EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
]),
Example(Geometric, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
]),
Example(Beta, [
{
'concentration1': torch.randn(2, 3).exp().requires_grad_(),
'concentration0': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration1': torch.randn(4).exp().requires_grad_(),
'concentration0': torch.randn(4).exp().requires_grad_(),
},
]),
Example(Categorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(Multinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': 1.0},
{'loc': torch.tensor([0.0]), 'scale': 1.0},
{'loc': torch.tensor([[0.0], [0.0]]),
'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(Chi2, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(StudentT, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(Dirichlet, [
{'concentration': torch.randn(2, 3).exp().requires_grad_()},
{'concentration': torch.randn(4).exp().requires_grad_()},
]),
Example(Exponential, [
{'rate': torch.randn(5, 5).abs().requires_grad_()},
{'rate': torch.randn(1).abs().requires_grad_()},
]),
Example(FisherSnedecor, [
{
'df1': torch.randn(5, 5).abs().requires_grad_(),
'df2': torch.randn(5, 5).abs().requires_grad_(),
},
{
'df1': torch.randn(1).abs().requires_grad_(),
'df2': torch.randn(1).abs().requires_grad_(),
},
{
'df1': torch.tensor([1.0]),
'df2': 1.0,
}
]),
Example(Gamma, [
{
'concentration': torch.randn(2, 3).exp().requires_grad_(),
'rate': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration': torch.randn(1).exp().requires_grad_(),
'rate': torch.randn(1).exp().requires_grad_(),
},
]),
Example(Gumbel, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
]),
Example(HalfCauchy, [
{'scale': 1.0},
{'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.randn(5, 5).abs().requires_grad_()},
{'scale': torch.randn(1).abs().requires_grad_()},
{'scale': torch.tensor([1e-5, 1e-5], requires_grad=True)}
]),
Example(Independent, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 0,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 1,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 3,
},
]),
Example(Kumaraswamy, [
{
'concentration1': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
'concentration0': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
},
{
'concentration1': torch.rand(4).uniform_(1, 2).requires_grad_(),
'concentration0': torch.rand(4).uniform_(1, 2).requires_grad_(),
},
]),
Example(LKJCholesky, [
{
'dim': 2,
'concentration': 0.5
},
{
'dim': 3,
'concentration': torch.tensor([0.5, 1., 2.]),
},
{
'dim': 100,
'concentration': 4.
},
]),
Example(Laplace, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogisticNormal, [
{
'loc': torch.randn(5, 5).requires_grad_(),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1).requires_grad_(),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LowRankMultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'cov_factor': torch.randn(5, 2, 1, requires_grad=True),
'cov_diag': torch.tensor([2.0, 0.25], requires_grad=True),
},
{
'loc': torch.randn(4, 3, requires_grad=True),
'cov_factor': torch.randn(3, 2, requires_grad=True),
'cov_diag': torch.tensor([5.0, 1.5, 3.], requires_grad=True),
}
]),
Example(MultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
},
{
'loc': torch.randn(2, 3, requires_grad=True),
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
},
{
'loc': torch.randn(5, 3, 2, requires_grad=True),
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
},
{
'loc': torch.tensor([1.0, -1.0]),
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
},
]),
Example(Normal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 1.0,
'alpha': 1.0
},
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'alpha': torch.randn(5, 5).abs().requires_grad_()
},
{
'scale': torch.tensor([1.0]),
'alpha': 1.0
}
]),
Example(Poisson, [
{
'rate': torch.randn(5, 5).abs().requires_grad_(),
},
{
'rate': torch.randn(3).abs().requires_grad_(),
},
{
'rate': 0.2,
},
{
'rate': torch.tensor([0.0], requires_grad=True),
},
{
'rate': 0.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([0.3]),
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([-2.0, 2.0, 1.0, 5.0])
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]])
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([[-2.0, 2.0], [1.0, 5.0]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': [],
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': ExpTransform(),
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': [AffineTransform(torch.randn(3, 5), torch.randn(3, 5)),
ExpTransform()],
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': AffineTransform(1, 2),
},
{
'base_distribution': Uniform(torch.tensor(1e8).log(), torch.tensor(1e10).log()),
'transforms': ExpTransform(),
},
]),
Example(Uniform, [
{
'low': torch.zeros(5, 5, requires_grad=True),
'high': torch.ones(5, 5, requires_grad=True),
},
{
'low': torch.zeros(1, requires_grad=True),
'high': torch.ones(1, requires_grad=True),
},
{
'low': torch.tensor([1.0, 1.0], requires_grad=True),
'high': torch.tensor([2.0, 3.0], requires_grad=True),
},
]),
Example(Weibull, [
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'concentration': torch.randn(1).abs().requires_grad_()
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
'df': torch.tensor([5., 4], requires_grad=True),
},
{
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
'df': torch.tensor([5., 3.5, 3], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': torch.tensor([3.0]),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': 3.0,
},
]),
Example(MixtureSameFamily, [
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': Normal(torch.randn(5, requires_grad=True),
torch.rand(5, requires_grad=True)),
},
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': MultivariateNormal(
loc=torch.randn(5, 2, requires_grad=True),
covariance_matrix=torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True)),
},
]),
Example(VonMises, [
{
'loc': torch.tensor(1.0, requires_grad=True),
'concentration': torch.tensor(10.0, requires_grad=True)
},
{
'loc': torch.tensor([0.0, math.pi / 2], requires_grad=True),
'concentration': torch.tensor([1.0, 10.0], requires_grad=True)
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
])
]
BAD_EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
]),
Example(Beta, [
{
'concentration1': torch.tensor([0.0], requires_grad=True),
'concentration0': torch.tensor([0.0], requires_grad=True),
},
{
'concentration1': torch.tensor([-1.0], requires_grad=True),
'concentration0': torch.tensor([-2.0], requires_grad=True),
},
]),
Example(Geometric, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.3], requires_grad=True)},
{'probs': 1.00000001},
]),
Example(Categorical, [
{'probs': torch.tensor([[-0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[-1.0, 10.0], [0.0, -1.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': -1.0},
{'loc': torch.tensor([0.0]), 'scale': 0.0},
{'loc': torch.tensor([[0.0], [-2.0]]),
'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(Chi2, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(StudentT, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(Dirichlet, [
{'concentration': torch.tensor([0.], requires_grad=True)},
{'concentration': torch.tensor([-2.], requires_grad=True)}
]),
Example(Exponential, [
{'rate': torch.tensor([0., 0.], requires_grad=True)},
{'rate': torch.tensor([-2.], requires_grad=True)}
]),
Example(FisherSnedecor, [
{
'df1': torch.tensor([0., 0.], requires_grad=True),
'df2': torch.tensor([-1., -100.], requires_grad=True),
},
{
'df1': torch.tensor([1., 1.], requires_grad=True),
'df2': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gamma, [
{
'concentration': torch.tensor([0., 0.], requires_grad=True),
'rate': torch.tensor([-1., -100.], requires_grad=True),
},
{
'concentration': torch.tensor([1., 1.], requires_grad=True),
'rate': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gumbel, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(HalfCauchy, [
{'scale': -1.0},
{'scale': 0.0},
{'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.tensor([0., 1.], requires_grad=True)},
{'scale': torch.tensor([1., -1.], requires_grad=True)},
]),
Example(LKJCholesky, [
{
'dim': -2,
'concentration': 0.1
},
{
'dim': 1,
'concentration': 2.,
},
{
'dim': 2,
'concentration': 0.,
},
]),
Example(Laplace, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(MultivariateNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
},
]),
Example(Normal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, -1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 0.0,
'alpha': 0.0
},
{
'scale': torch.tensor([0.0, 0.0], requires_grad=True),
'alpha': torch.tensor([-1e-5, 0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0]),
'alpha': -1.0
}
]),
Example(Poisson, [
{
'rate': torch.tensor([-0.1], requires_grad=True),
},
{
'rate': -1.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([1.5], requires_grad=True),
'probs': torch.tensor([1.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([-1.0]),
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[-0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[-1.0, 0.0], [-1.0, 1.1]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(0, 1),
'transforms': lambda x: x,
},
{
'base_distribution': Normal(0, 1),
'transforms': [lambda x: x],
},
]),
Example(Uniform, [
{
'low': torch.tensor([2.0], requires_grad=True),
'high': torch.tensor([2.0], requires_grad=True),
},
{
'low': torch.tensor([0.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
},
{
'low': torch.tensor([1.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
}
]),
Example(Weibull, [
{
'scale': torch.tensor([0.0], requires_grad=True),
'concentration': torch.tensor([0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0], requires_grad=True),
'concentration': torch.tensor([-1.0], requires_grad=True)
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
'df': torch.tensor([1.5], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': 3.,
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
])
]
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
class TestAgainstScipy(DistributionsTestCase):
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
import torch.autograd.forward_ad as fwAD
from torch import inf, nan
from torch.autograd import grad
from torch.autograd.functional import jacobian
from torch.distributions import (
Bernoulli,
Beta,
Binomial,
Categorical,
Cauchy,
Chi2,
constraints,
ContinuousBernoulli,
Dirichlet,
Distribution,
Exponential,
ExponentialFamily,
FisherSnedecor,
Gamma,
Geometric,
Gumbel,
HalfCauchy,
HalfNormal,
Independent,
InverseGamma,
kl_divergence,
Kumaraswamy,
Laplace,
LKJCholesky,
LogisticNormal,
LogNormal,
LowRankMultivariateNormal,
MixtureSameFamily,
Multinomial,
MultivariateNormal,
NegativeBinomial,
Normal,
OneHotCategorical,
OneHotCategoricalStraightThrough,
Pareto,
Poisson,
RelaxedBernoulli,
RelaxedOneHotCategorical,
StudentT,
TransformedDistribution,
Uniform,
VonMises,
Weibull,
Wishart,
)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (
AffineTransform,
CatTransform,
ExpTransform,
identity_transform,
StackTransform,
)
from torch.distributions.utils import (
lazy_property,
probs_to_logits,
tril_matrix_to_vec,
vec_to_tril_matrix,
)
from torch.nn.functional import softmax
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
gradcheck,
load_tests,
run_tests,
set_default_dtype,
set_rng_seed,
skipIfTorchDynamo,
TestCase,
)
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.special
import scipy.stats
Example = namedtuple("Example", ["Dist", "params"])
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@skipIfTorchDynamo("FIXME: Tries to trace through SciPy and fails")
class TestAgainstScipy(DistributionsTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributions/test_distributions.py
|
test_invalid
|
def test_invalid(self):
for Dist, params in BAD_EXAMPLES:
for i, param in enumerate(params):
try:
with self.assertRaises(ValueError):
Dist(validate_args=True, **param)
except AssertionError as e:
fail_string = "ValueError not raised for {} example {}/{}"
raise AssertionError(
fail_string.format(Dist.__name__, i + 1, len(params))
) from e
|
def test_invalid(self):
for Dist, params in _get_bad_examples():
for i, param in enumerate(params):
try:
with self.assertRaises(ValueError):
Dist(validate_args=True, **param)
except AssertionError as e:
fail_string = "ValueError not raised for {} example {}/{}"
raise AssertionError(
fail_string.format(Dist.__name__, i + 1, len(params))
) from e
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
from torch import inf, nan
from torch.testing._internal.common_utils import \
(TestCase, run_tests, set_rng_seed, TEST_WITH_UBSAN, load_tests,
gradcheck, skipIfTorchDynamo)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.autograd import grad
import torch.autograd.forward_ad as fwAD
from torch.autograd.functional import jacobian
from torch.distributions import (Bernoulli, Beta, Binomial, Categorical,
Cauchy, Chi2, ContinuousBernoulli, Dirichlet,
Distribution, Exponential, ExponentialFamily,
FisherSnedecor, Gamma, Geometric, Gumbel,
HalfCauchy, HalfNormal, Independent, Kumaraswamy,
LKJCholesky, Laplace, LogisticNormal,
LogNormal, LowRankMultivariateNormal,
MixtureSameFamily, Multinomial, MultivariateNormal,
NegativeBinomial, Normal,
OneHotCategorical, OneHotCategoricalStraightThrough,
Pareto, Poisson, RelaxedBernoulli, RelaxedOneHotCategorical,
StudentT, TransformedDistribution, Uniform,
VonMises, Weibull, Wishart, constraints, kl_divergence)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (AffineTransform, CatTransform, ExpTransform,
StackTransform, identity_transform)
from torch.distributions.utils import (probs_to_logits, lazy_property, tril_matrix_to_vec,
vec_to_tril_matrix)
from torch.nn.functional import softmax
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.stats
import scipy.special
Example = namedtuple('Example', ['Dist', 'params'])
EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
]),
Example(Geometric, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
]),
Example(Beta, [
{
'concentration1': torch.randn(2, 3).exp().requires_grad_(),
'concentration0': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration1': torch.randn(4).exp().requires_grad_(),
'concentration0': torch.randn(4).exp().requires_grad_(),
},
]),
Example(Categorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(Multinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': 1.0},
{'loc': torch.tensor([0.0]), 'scale': 1.0},
{'loc': torch.tensor([[0.0], [0.0]]),
'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(Chi2, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(StudentT, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(Dirichlet, [
{'concentration': torch.randn(2, 3).exp().requires_grad_()},
{'concentration': torch.randn(4).exp().requires_grad_()},
]),
Example(Exponential, [
{'rate': torch.randn(5, 5).abs().requires_grad_()},
{'rate': torch.randn(1).abs().requires_grad_()},
]),
Example(FisherSnedecor, [
{
'df1': torch.randn(5, 5).abs().requires_grad_(),
'df2': torch.randn(5, 5).abs().requires_grad_(),
},
{
'df1': torch.randn(1).abs().requires_grad_(),
'df2': torch.randn(1).abs().requires_grad_(),
},
{
'df1': torch.tensor([1.0]),
'df2': 1.0,
}
]),
Example(Gamma, [
{
'concentration': torch.randn(2, 3).exp().requires_grad_(),
'rate': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration': torch.randn(1).exp().requires_grad_(),
'rate': torch.randn(1).exp().requires_grad_(),
},
]),
Example(Gumbel, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
]),
Example(HalfCauchy, [
{'scale': 1.0},
{'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.randn(5, 5).abs().requires_grad_()},
{'scale': torch.randn(1).abs().requires_grad_()},
{'scale': torch.tensor([1e-5, 1e-5], requires_grad=True)}
]),
Example(Independent, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 0,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 1,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 3,
},
]),
Example(Kumaraswamy, [
{
'concentration1': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
'concentration0': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
},
{
'concentration1': torch.rand(4).uniform_(1, 2).requires_grad_(),
'concentration0': torch.rand(4).uniform_(1, 2).requires_grad_(),
},
]),
Example(LKJCholesky, [
{
'dim': 2,
'concentration': 0.5
},
{
'dim': 3,
'concentration': torch.tensor([0.5, 1., 2.]),
},
{
'dim': 100,
'concentration': 4.
},
]),
Example(Laplace, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogisticNormal, [
{
'loc': torch.randn(5, 5).requires_grad_(),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1).requires_grad_(),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LowRankMultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'cov_factor': torch.randn(5, 2, 1, requires_grad=True),
'cov_diag': torch.tensor([2.0, 0.25], requires_grad=True),
},
{
'loc': torch.randn(4, 3, requires_grad=True),
'cov_factor': torch.randn(3, 2, requires_grad=True),
'cov_diag': torch.tensor([5.0, 1.5, 3.], requires_grad=True),
}
]),
Example(MultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
},
{
'loc': torch.randn(2, 3, requires_grad=True),
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
},
{
'loc': torch.randn(5, 3, 2, requires_grad=True),
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
},
{
'loc': torch.tensor([1.0, -1.0]),
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
},
]),
Example(Normal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 1.0,
'alpha': 1.0
},
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'alpha': torch.randn(5, 5).abs().requires_grad_()
},
{
'scale': torch.tensor([1.0]),
'alpha': 1.0
}
]),
Example(Poisson, [
{
'rate': torch.randn(5, 5).abs().requires_grad_(),
},
{
'rate': torch.randn(3).abs().requires_grad_(),
},
{
'rate': 0.2,
},
{
'rate': torch.tensor([0.0], requires_grad=True),
},
{
'rate': 0.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([0.3]),
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([-2.0, 2.0, 1.0, 5.0])
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]])
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([[-2.0, 2.0], [1.0, 5.0]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': [],
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': ExpTransform(),
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': [AffineTransform(torch.randn(3, 5), torch.randn(3, 5)),
ExpTransform()],
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': AffineTransform(1, 2),
},
{
'base_distribution': Uniform(torch.tensor(1e8).log(), torch.tensor(1e10).log()),
'transforms': ExpTransform(),
},
]),
Example(Uniform, [
{
'low': torch.zeros(5, 5, requires_grad=True),
'high': torch.ones(5, 5, requires_grad=True),
},
{
'low': torch.zeros(1, requires_grad=True),
'high': torch.ones(1, requires_grad=True),
},
{
'low': torch.tensor([1.0, 1.0], requires_grad=True),
'high': torch.tensor([2.0, 3.0], requires_grad=True),
},
]),
Example(Weibull, [
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'concentration': torch.randn(1).abs().requires_grad_()
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
'df': torch.tensor([5., 4], requires_grad=True),
},
{
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
'df': torch.tensor([5., 3.5, 3], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': torch.tensor([3.0]),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': 3.0,
},
]),
Example(MixtureSameFamily, [
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': Normal(torch.randn(5, requires_grad=True),
torch.rand(5, requires_grad=True)),
},
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': MultivariateNormal(
loc=torch.randn(5, 2, requires_grad=True),
covariance_matrix=torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True)),
},
]),
Example(VonMises, [
{
'loc': torch.tensor(1.0, requires_grad=True),
'concentration': torch.tensor(10.0, requires_grad=True)
},
{
'loc': torch.tensor([0.0, math.pi / 2], requires_grad=True),
'concentration': torch.tensor([1.0, 10.0], requires_grad=True)
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
])
]
BAD_EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
]),
Example(Beta, [
{
'concentration1': torch.tensor([0.0], requires_grad=True),
'concentration0': torch.tensor([0.0], requires_grad=True),
},
{
'concentration1': torch.tensor([-1.0], requires_grad=True),
'concentration0': torch.tensor([-2.0], requires_grad=True),
},
]),
Example(Geometric, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.3], requires_grad=True)},
{'probs': 1.00000001},
]),
Example(Categorical, [
{'probs': torch.tensor([[-0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[-1.0, 10.0], [0.0, -1.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': -1.0},
{'loc': torch.tensor([0.0]), 'scale': 0.0},
{'loc': torch.tensor([[0.0], [-2.0]]),
'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(Chi2, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(StudentT, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(Dirichlet, [
{'concentration': torch.tensor([0.], requires_grad=True)},
{'concentration': torch.tensor([-2.], requires_grad=True)}
]),
Example(Exponential, [
{'rate': torch.tensor([0., 0.], requires_grad=True)},
{'rate': torch.tensor([-2.], requires_grad=True)}
]),
Example(FisherSnedecor, [
{
'df1': torch.tensor([0., 0.], requires_grad=True),
'df2': torch.tensor([-1., -100.], requires_grad=True),
},
{
'df1': torch.tensor([1., 1.], requires_grad=True),
'df2': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gamma, [
{
'concentration': torch.tensor([0., 0.], requires_grad=True),
'rate': torch.tensor([-1., -100.], requires_grad=True),
},
{
'concentration': torch.tensor([1., 1.], requires_grad=True),
'rate': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gumbel, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(HalfCauchy, [
{'scale': -1.0},
{'scale': 0.0},
{'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.tensor([0., 1.], requires_grad=True)},
{'scale': torch.tensor([1., -1.], requires_grad=True)},
]),
Example(LKJCholesky, [
{
'dim': -2,
'concentration': 0.1
},
{
'dim': 1,
'concentration': 2.,
},
{
'dim': 2,
'concentration': 0.,
},
]),
Example(Laplace, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(MultivariateNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
},
]),
Example(Normal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, -1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 0.0,
'alpha': 0.0
},
{
'scale': torch.tensor([0.0, 0.0], requires_grad=True),
'alpha': torch.tensor([-1e-5, 0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0]),
'alpha': -1.0
}
]),
Example(Poisson, [
{
'rate': torch.tensor([-0.1], requires_grad=True),
},
{
'rate': -1.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([1.5], requires_grad=True),
'probs': torch.tensor([1.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([-1.0]),
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[-0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[-1.0, 0.0], [-1.0, 1.1]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(0, 1),
'transforms': lambda x: x,
},
{
'base_distribution': Normal(0, 1),
'transforms': [lambda x: x],
},
]),
Example(Uniform, [
{
'low': torch.tensor([2.0], requires_grad=True),
'high': torch.tensor([2.0], requires_grad=True),
},
{
'low': torch.tensor([0.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
},
{
'low': torch.tensor([1.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
}
]),
Example(Weibull, [
{
'scale': torch.tensor([0.0], requires_grad=True),
'concentration': torch.tensor([0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0], requires_grad=True),
'concentration': torch.tensor([-1.0], requires_grad=True)
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
'df': torch.tensor([1.5], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': 3.,
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
])
]
class TestValidation(DistributionsTestCase):
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
import torch.autograd.forward_ad as fwAD
from torch import inf, nan
from torch.autograd import grad
from torch.autograd.functional import jacobian
from torch.distributions import (
Bernoulli,
Beta,
Binomial,
Categorical,
Cauchy,
Chi2,
constraints,
ContinuousBernoulli,
Dirichlet,
Distribution,
Exponential,
ExponentialFamily,
FisherSnedecor,
Gamma,
Geometric,
Gumbel,
HalfCauchy,
HalfNormal,
Independent,
InverseGamma,
kl_divergence,
Kumaraswamy,
Laplace,
LKJCholesky,
LogisticNormal,
LogNormal,
LowRankMultivariateNormal,
MixtureSameFamily,
Multinomial,
MultivariateNormal,
NegativeBinomial,
Normal,
OneHotCategorical,
OneHotCategoricalStraightThrough,
Pareto,
Poisson,
RelaxedBernoulli,
RelaxedOneHotCategorical,
StudentT,
TransformedDistribution,
Uniform,
VonMises,
Weibull,
Wishart,
)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (
AffineTransform,
CatTransform,
ExpTransform,
identity_transform,
StackTransform,
)
from torch.distributions.utils import (
lazy_property,
probs_to_logits,
tril_matrix_to_vec,
vec_to_tril_matrix,
)
from torch.nn.functional import softmax
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
gradcheck,
load_tests,
run_tests,
set_default_dtype,
set_rng_seed,
skipIfTorchDynamo,
TestCase,
)
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.special
import scipy.stats
Example = namedtuple("Example", ["Dist", "params"])
class TestValidation(DistributionsTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
debug_compile_fx_inner
|
def debug_compile_fx_inner(graph, example_inputs, *args, **kwargs):
aot_graphs.append(graph)
return compile_fx.compile_fx_inner(graph, example_inputs, *args, **kwargs)
backend = functools.partial(
compile_fx.compile_fx, inner_compile=debug_compile_fx_inner
)
opt_fn = torch.compile(fn, backend=backend, fullgraph=True)
opt_fn(*args1).sum().backward()
if PLATFORM_SUPPORTS_CUDNN_ATTENTION and SM90OrLater:
op = torch.ops.aten._scaled_dot_product_cudnn_attention.default
else:
op = torch.ops.aten._scaled_dot_product_flash_attention.default
fwd_graph = aot_graphs[0]
self.assertTrue(
count_ops(
fwd_graph,
[],
freq=1,
op=op,
)
)
bwd_graph = aot_graphs[1]
# Check that sin is not recomputed in the backward graph - checks percolate tags
self.assertTrue(count_ops(bwd_graph, [], freq=0, op=torch.ops.aten.sin.default))
# Check that the sdpa op is recomputed in the backward graph
self.assertTrue(
count_ops(
bwd_graph,
[],
freq=1,
op=op,
)
)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributions/test_distributions.py
|
_examples
|
def _examples(self):
for Dist, params in EXAMPLES:
for param in params:
keys = param.keys()
values = tuple(param[key] for key in keys)
if not all(isinstance(x, torch.Tensor) for x in values):
continue
sample = Dist(**param).sample()
yield Dist, keys, values, sample
|
def _examples(self):
for Dist, params in _get_examples():
for param in params:
keys = param.keys()
values = tuple(param[key] for key in keys)
if not all(isinstance(x, torch.Tensor) for x in values):
continue
sample = Dist(**param).sample()
yield Dist, keys, values, sample
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
from torch import inf, nan
from torch.testing._internal.common_utils import \
(TestCase, run_tests, set_rng_seed, TEST_WITH_UBSAN, load_tests,
gradcheck, skipIfTorchDynamo)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.autograd import grad
import torch.autograd.forward_ad as fwAD
from torch.autograd.functional import jacobian
from torch.distributions import (Bernoulli, Beta, Binomial, Categorical,
Cauchy, Chi2, ContinuousBernoulli, Dirichlet,
Distribution, Exponential, ExponentialFamily,
FisherSnedecor, Gamma, Geometric, Gumbel,
HalfCauchy, HalfNormal, Independent, Kumaraswamy,
LKJCholesky, Laplace, LogisticNormal,
LogNormal, LowRankMultivariateNormal,
MixtureSameFamily, Multinomial, MultivariateNormal,
NegativeBinomial, Normal,
OneHotCategorical, OneHotCategoricalStraightThrough,
Pareto, Poisson, RelaxedBernoulli, RelaxedOneHotCategorical,
StudentT, TransformedDistribution, Uniform,
VonMises, Weibull, Wishart, constraints, kl_divergence)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (AffineTransform, CatTransform, ExpTransform,
StackTransform, identity_transform)
from torch.distributions.utils import (probs_to_logits, lazy_property, tril_matrix_to_vec,
vec_to_tril_matrix)
from torch.nn.functional import softmax
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.stats
import scipy.special
Example = namedtuple('Example', ['Dist', 'params'])
EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
]),
Example(Geometric, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
]),
Example(Beta, [
{
'concentration1': torch.randn(2, 3).exp().requires_grad_(),
'concentration0': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration1': torch.randn(4).exp().requires_grad_(),
'concentration0': torch.randn(4).exp().requires_grad_(),
},
]),
Example(Categorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(Multinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': 1.0},
{'loc': torch.tensor([0.0]), 'scale': 1.0},
{'loc': torch.tensor([[0.0], [0.0]]),
'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(Chi2, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(StudentT, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(Dirichlet, [
{'concentration': torch.randn(2, 3).exp().requires_grad_()},
{'concentration': torch.randn(4).exp().requires_grad_()},
]),
Example(Exponential, [
{'rate': torch.randn(5, 5).abs().requires_grad_()},
{'rate': torch.randn(1).abs().requires_grad_()},
]),
Example(FisherSnedecor, [
{
'df1': torch.randn(5, 5).abs().requires_grad_(),
'df2': torch.randn(5, 5).abs().requires_grad_(),
},
{
'df1': torch.randn(1).abs().requires_grad_(),
'df2': torch.randn(1).abs().requires_grad_(),
},
{
'df1': torch.tensor([1.0]),
'df2': 1.0,
}
]),
Example(Gamma, [
{
'concentration': torch.randn(2, 3).exp().requires_grad_(),
'rate': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration': torch.randn(1).exp().requires_grad_(),
'rate': torch.randn(1).exp().requires_grad_(),
},
]),
Example(Gumbel, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
]),
Example(HalfCauchy, [
{'scale': 1.0},
{'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.randn(5, 5).abs().requires_grad_()},
{'scale': torch.randn(1).abs().requires_grad_()},
{'scale': torch.tensor([1e-5, 1e-5], requires_grad=True)}
]),
Example(Independent, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 0,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 1,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 3,
},
]),
Example(Kumaraswamy, [
{
'concentration1': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
'concentration0': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
},
{
'concentration1': torch.rand(4).uniform_(1, 2).requires_grad_(),
'concentration0': torch.rand(4).uniform_(1, 2).requires_grad_(),
},
]),
Example(LKJCholesky, [
{
'dim': 2,
'concentration': 0.5
},
{
'dim': 3,
'concentration': torch.tensor([0.5, 1., 2.]),
},
{
'dim': 100,
'concentration': 4.
},
]),
Example(Laplace, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogisticNormal, [
{
'loc': torch.randn(5, 5).requires_grad_(),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1).requires_grad_(),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LowRankMultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'cov_factor': torch.randn(5, 2, 1, requires_grad=True),
'cov_diag': torch.tensor([2.0, 0.25], requires_grad=True),
},
{
'loc': torch.randn(4, 3, requires_grad=True),
'cov_factor': torch.randn(3, 2, requires_grad=True),
'cov_diag': torch.tensor([5.0, 1.5, 3.], requires_grad=True),
}
]),
Example(MultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
},
{
'loc': torch.randn(2, 3, requires_grad=True),
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
},
{
'loc': torch.randn(5, 3, 2, requires_grad=True),
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
},
{
'loc': torch.tensor([1.0, -1.0]),
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
},
]),
Example(Normal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 1.0,
'alpha': 1.0
},
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'alpha': torch.randn(5, 5).abs().requires_grad_()
},
{
'scale': torch.tensor([1.0]),
'alpha': 1.0
}
]),
Example(Poisson, [
{
'rate': torch.randn(5, 5).abs().requires_grad_(),
},
{
'rate': torch.randn(3).abs().requires_grad_(),
},
{
'rate': 0.2,
},
{
'rate': torch.tensor([0.0], requires_grad=True),
},
{
'rate': 0.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([0.3]),
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([-2.0, 2.0, 1.0, 5.0])
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]])
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([[-2.0, 2.0], [1.0, 5.0]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': [],
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': ExpTransform(),
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': [AffineTransform(torch.randn(3, 5), torch.randn(3, 5)),
ExpTransform()],
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': AffineTransform(1, 2),
},
{
'base_distribution': Uniform(torch.tensor(1e8).log(), torch.tensor(1e10).log()),
'transforms': ExpTransform(),
},
]),
Example(Uniform, [
{
'low': torch.zeros(5, 5, requires_grad=True),
'high': torch.ones(5, 5, requires_grad=True),
},
{
'low': torch.zeros(1, requires_grad=True),
'high': torch.ones(1, requires_grad=True),
},
{
'low': torch.tensor([1.0, 1.0], requires_grad=True),
'high': torch.tensor([2.0, 3.0], requires_grad=True),
},
]),
Example(Weibull, [
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'concentration': torch.randn(1).abs().requires_grad_()
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
'df': torch.tensor([5., 4], requires_grad=True),
},
{
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
'df': torch.tensor([5., 3.5, 3], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': torch.tensor([3.0]),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': 3.0,
},
]),
Example(MixtureSameFamily, [
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': Normal(torch.randn(5, requires_grad=True),
torch.rand(5, requires_grad=True)),
},
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': MultivariateNormal(
loc=torch.randn(5, 2, requires_grad=True),
covariance_matrix=torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True)),
},
]),
Example(VonMises, [
{
'loc': torch.tensor(1.0, requires_grad=True),
'concentration': torch.tensor(10.0, requires_grad=True)
},
{
'loc': torch.tensor([0.0, math.pi / 2], requires_grad=True),
'concentration': torch.tensor([1.0, 10.0], requires_grad=True)
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
])
]
BAD_EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
]),
Example(Beta, [
{
'concentration1': torch.tensor([0.0], requires_grad=True),
'concentration0': torch.tensor([0.0], requires_grad=True),
},
{
'concentration1': torch.tensor([-1.0], requires_grad=True),
'concentration0': torch.tensor([-2.0], requires_grad=True),
},
]),
Example(Geometric, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.3], requires_grad=True)},
{'probs': 1.00000001},
]),
Example(Categorical, [
{'probs': torch.tensor([[-0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[-1.0, 10.0], [0.0, -1.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': -1.0},
{'loc': torch.tensor([0.0]), 'scale': 0.0},
{'loc': torch.tensor([[0.0], [-2.0]]),
'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(Chi2, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(StudentT, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(Dirichlet, [
{'concentration': torch.tensor([0.], requires_grad=True)},
{'concentration': torch.tensor([-2.], requires_grad=True)}
]),
Example(Exponential, [
{'rate': torch.tensor([0., 0.], requires_grad=True)},
{'rate': torch.tensor([-2.], requires_grad=True)}
]),
Example(FisherSnedecor, [
{
'df1': torch.tensor([0., 0.], requires_grad=True),
'df2': torch.tensor([-1., -100.], requires_grad=True),
},
{
'df1': torch.tensor([1., 1.], requires_grad=True),
'df2': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gamma, [
{
'concentration': torch.tensor([0., 0.], requires_grad=True),
'rate': torch.tensor([-1., -100.], requires_grad=True),
},
{
'concentration': torch.tensor([1., 1.], requires_grad=True),
'rate': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gumbel, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(HalfCauchy, [
{'scale': -1.0},
{'scale': 0.0},
{'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.tensor([0., 1.], requires_grad=True)},
{'scale': torch.tensor([1., -1.], requires_grad=True)},
]),
Example(LKJCholesky, [
{
'dim': -2,
'concentration': 0.1
},
{
'dim': 1,
'concentration': 2.,
},
{
'dim': 2,
'concentration': 0.,
},
]),
Example(Laplace, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(MultivariateNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
},
]),
Example(Normal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, -1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 0.0,
'alpha': 0.0
},
{
'scale': torch.tensor([0.0, 0.0], requires_grad=True),
'alpha': torch.tensor([-1e-5, 0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0]),
'alpha': -1.0
}
]),
Example(Poisson, [
{
'rate': torch.tensor([-0.1], requires_grad=True),
},
{
'rate': -1.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([1.5], requires_grad=True),
'probs': torch.tensor([1.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([-1.0]),
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[-0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[-1.0, 0.0], [-1.0, 1.1]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(0, 1),
'transforms': lambda x: x,
},
{
'base_distribution': Normal(0, 1),
'transforms': [lambda x: x],
},
]),
Example(Uniform, [
{
'low': torch.tensor([2.0], requires_grad=True),
'high': torch.tensor([2.0], requires_grad=True),
},
{
'low': torch.tensor([0.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
},
{
'low': torch.tensor([1.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
}
]),
Example(Weibull, [
{
'scale': torch.tensor([0.0], requires_grad=True),
'concentration': torch.tensor([0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0], requires_grad=True),
'concentration': torch.tensor([-1.0], requires_grad=True)
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
'df': torch.tensor([1.5], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': 3.,
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
])
]
class TestJit(DistributionsTestCase):
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
import torch.autograd.forward_ad as fwAD
from torch import inf, nan
from torch.autograd import grad
from torch.autograd.functional import jacobian
from torch.distributions import (
Bernoulli,
Beta,
Binomial,
Categorical,
Cauchy,
Chi2,
constraints,
ContinuousBernoulli,
Dirichlet,
Distribution,
Exponential,
ExponentialFamily,
FisherSnedecor,
Gamma,
Geometric,
Gumbel,
HalfCauchy,
HalfNormal,
Independent,
InverseGamma,
kl_divergence,
Kumaraswamy,
Laplace,
LKJCholesky,
LogisticNormal,
LogNormal,
LowRankMultivariateNormal,
MixtureSameFamily,
Multinomial,
MultivariateNormal,
NegativeBinomial,
Normal,
OneHotCategorical,
OneHotCategoricalStraightThrough,
Pareto,
Poisson,
RelaxedBernoulli,
RelaxedOneHotCategorical,
StudentT,
TransformedDistribution,
Uniform,
VonMises,
Weibull,
Wishart,
)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (
AffineTransform,
CatTransform,
ExpTransform,
identity_transform,
StackTransform,
)
from torch.distributions.utils import (
lazy_property,
probs_to_logits,
tril_matrix_to_vec,
vec_to_tril_matrix,
)
from torch.nn.functional import softmax
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
gradcheck,
load_tests,
run_tests,
set_default_dtype,
set_rng_seed,
skipIfTorchDynamo,
TestCase,
)
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.special
import scipy.stats
Example = namedtuple("Example", ["Dist", "params"])
class TestJit(DistributionsTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributions/test_distributions.py
|
test_log_prob
|
def test_log_prob(self):
for Dist, keys, values, sample in self._examples():
# FIXME traced functions produce incorrect results
xfail = [LowRankMultivariateNormal, MultivariateNormal]
if Dist in xfail:
continue
def f(sample, *values):
param = dict(zip(keys, values))
dist = Dist(**param)
return dist.log_prob(sample)
traced_f = torch.jit.trace(f, (sample,) + values)
# check on different data
values, sample = self._perturb(Dist, keys, values, sample)
expected = f(sample, *values)
actual = traced_f(sample, *values)
self.assertEqual(expected, actual,
msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual))
|
def test_log_prob(self):
for Dist, keys, values, sample in self._examples():
# FIXME traced functions produce incorrect results
xfail = [LowRankMultivariateNormal, MultivariateNormal]
if Dist in xfail:
continue
def f(sample, *values):
param = dict(zip(keys, values))
dist = Dist(**param)
return dist.log_prob(sample)
traced_f = torch.jit.trace(f, (sample,) + values)
# check on different data
values, sample = self._perturb(Dist, keys, values, sample)
expected = f(sample, *values)
actual = traced_f(sample, *values)
self.assertEqual(
expected,
actual,
msg=f"{Dist.__name__}\nExpected:\n{expected}\nActual:\n{actual}",
)
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
from torch import inf, nan
from torch.testing._internal.common_utils import \
(TestCase, run_tests, set_rng_seed, TEST_WITH_UBSAN, load_tests,
gradcheck, skipIfTorchDynamo)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.autograd import grad
import torch.autograd.forward_ad as fwAD
from torch.autograd.functional import jacobian
from torch.distributions import (Bernoulli, Beta, Binomial, Categorical,
Cauchy, Chi2, ContinuousBernoulli, Dirichlet,
Distribution, Exponential, ExponentialFamily,
FisherSnedecor, Gamma, Geometric, Gumbel,
HalfCauchy, HalfNormal, Independent, Kumaraswamy,
LKJCholesky, Laplace, LogisticNormal,
LogNormal, LowRankMultivariateNormal,
MixtureSameFamily, Multinomial, MultivariateNormal,
NegativeBinomial, Normal,
OneHotCategorical, OneHotCategoricalStraightThrough,
Pareto, Poisson, RelaxedBernoulli, RelaxedOneHotCategorical,
StudentT, TransformedDistribution, Uniform,
VonMises, Weibull, Wishart, constraints, kl_divergence)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (AffineTransform, CatTransform, ExpTransform,
StackTransform, identity_transform)
from torch.distributions.utils import (probs_to_logits, lazy_property, tril_matrix_to_vec,
vec_to_tril_matrix)
from torch.nn.functional import softmax
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.stats
import scipy.special
Example = namedtuple('Example', ['Dist', 'params'])
EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
]),
Example(Geometric, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
]),
Example(Beta, [
{
'concentration1': torch.randn(2, 3).exp().requires_grad_(),
'concentration0': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration1': torch.randn(4).exp().requires_grad_(),
'concentration0': torch.randn(4).exp().requires_grad_(),
},
]),
Example(Categorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10, 8])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor([[10., 8.], [5., 3.]])},
{'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True),
'total_count': torch.tensor(0.)},
]),
Example(Multinomial, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': 1.0},
{'loc': torch.tensor([0.0]), 'scale': 1.0},
{'loc': torch.tensor([[0.0], [0.0]]),
'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(Chi2, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(StudentT, [
{'df': torch.randn(2, 3).exp().requires_grad_()},
{'df': torch.randn(1).exp().requires_grad_()},
]),
Example(Dirichlet, [
{'concentration': torch.randn(2, 3).exp().requires_grad_()},
{'concentration': torch.randn(4).exp().requires_grad_()},
]),
Example(Exponential, [
{'rate': torch.randn(5, 5).abs().requires_grad_()},
{'rate': torch.randn(1).abs().requires_grad_()},
]),
Example(FisherSnedecor, [
{
'df1': torch.randn(5, 5).abs().requires_grad_(),
'df2': torch.randn(5, 5).abs().requires_grad_(),
},
{
'df1': torch.randn(1).abs().requires_grad_(),
'df2': torch.randn(1).abs().requires_grad_(),
},
{
'df1': torch.tensor([1.0]),
'df2': 1.0,
}
]),
Example(Gamma, [
{
'concentration': torch.randn(2, 3).exp().requires_grad_(),
'rate': torch.randn(2, 3).exp().requires_grad_(),
},
{
'concentration': torch.randn(1).exp().requires_grad_(),
'rate': torch.randn(1).exp().requires_grad_(),
},
]),
Example(Gumbel, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
]),
Example(HalfCauchy, [
{'scale': 1.0},
{'scale': torch.tensor([[1.0], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.randn(5, 5).abs().requires_grad_()},
{'scale': torch.randn(1).abs().requires_grad_()},
{'scale': torch.tensor([1e-5, 1e-5], requires_grad=True)}
]),
Example(Independent, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 0,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 1,
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 2,
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'reinterpreted_batch_ndims': 3,
},
]),
Example(Kumaraswamy, [
{
'concentration1': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
'concentration0': torch.empty(2, 3).uniform_(1, 2).requires_grad_(),
},
{
'concentration1': torch.rand(4).uniform_(1, 2).requires_grad_(),
'concentration0': torch.rand(4).uniform_(1, 2).requires_grad_(),
},
]),
Example(LKJCholesky, [
{
'dim': 2,
'concentration': 0.5
},
{
'dim': 3,
'concentration': torch.tensor([0.5, 1., 2.]),
},
{
'dim': 100,
'concentration': 4.
},
]),
Example(Laplace, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LogisticNormal, [
{
'loc': torch.randn(5, 5).requires_grad_(),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1).requires_grad_(),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(LowRankMultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'cov_factor': torch.randn(5, 2, 1, requires_grad=True),
'cov_diag': torch.tensor([2.0, 0.25], requires_grad=True),
},
{
'loc': torch.randn(4, 3, requires_grad=True),
'cov_factor': torch.randn(3, 2, requires_grad=True),
'cov_diag': torch.tensor([5.0, 1.5, 3.], requires_grad=True),
}
]),
Example(MultivariateNormal, [
{
'loc': torch.randn(5, 2, requires_grad=True),
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
},
{
'loc': torch.randn(2, 3, requires_grad=True),
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
},
{
'loc': torch.randn(5, 3, 2, requires_grad=True),
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
},
{
'loc': torch.tensor([1.0, -1.0]),
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
},
]),
Example(Normal, [
{
'loc': torch.randn(5, 5, requires_grad=True),
'scale': torch.randn(5, 5).abs().requires_grad_(),
},
{
'loc': torch.randn(1, requires_grad=True),
'scale': torch.randn(1).abs().requires_grad_(),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, 1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)},
{'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 1.0,
'alpha': 1.0
},
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'alpha': torch.randn(5, 5).abs().requires_grad_()
},
{
'scale': torch.tensor([1.0]),
'alpha': 1.0
}
]),
Example(Poisson, [
{
'rate': torch.randn(5, 5).abs().requires_grad_(),
},
{
'rate': torch.randn(3).abs().requires_grad_(),
},
{
'rate': 0.2,
},
{
'rate': torch.tensor([0.0], requires_grad=True),
},
{
'rate': 0.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([0.3]),
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([-2.0, 2.0, 1.0, 5.0])
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]])
},
{
'temperature': torch.tensor([7.2]),
'logits': torch.tensor([[-2.0, 2.0], [1.0, 5.0]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': [],
},
{
'base_distribution': Normal(torch.randn(2, 3, requires_grad=True),
torch.randn(2, 3).abs().requires_grad_()),
'transforms': ExpTransform(),
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': [AffineTransform(torch.randn(3, 5), torch.randn(3, 5)),
ExpTransform()],
},
{
'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True),
torch.randn(2, 3, 5).abs().requires_grad_()),
'transforms': AffineTransform(1, 2),
},
{
'base_distribution': Uniform(torch.tensor(1e8).log(), torch.tensor(1e10).log()),
'transforms': ExpTransform(),
},
]),
Example(Uniform, [
{
'low': torch.zeros(5, 5, requires_grad=True),
'high': torch.ones(5, 5, requires_grad=True),
},
{
'low': torch.zeros(1, requires_grad=True),
'high': torch.ones(1, requires_grad=True),
},
{
'low': torch.tensor([1.0, 1.0], requires_grad=True),
'high': torch.tensor([2.0, 3.0], requires_grad=True),
},
]),
Example(Weibull, [
{
'scale': torch.randn(5, 5).abs().requires_grad_(),
'concentration': torch.randn(1).abs().requires_grad_()
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'precision_matrix': torch.tensor([[2.0, 0.1, 0.0],
[0.1, 0.25, 0.0],
[0.0, 0.0, 0.3]], requires_grad=True),
'df': torch.tensor([5., 4], requires_grad=True),
},
{
'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]],
[[2.0, 0.0], [0.3, 0.25]],
[[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True),
'df': torch.tensor([5., 3.5, 3], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': torch.tensor([3.0]),
},
{
'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]),
'df': 3.0,
},
]),
Example(MixtureSameFamily, [
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': Normal(torch.randn(5, requires_grad=True),
torch.rand(5, requires_grad=True)),
},
{
'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)),
'component_distribution': MultivariateNormal(
loc=torch.randn(5, 2, requires_grad=True),
covariance_matrix=torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True)),
},
]),
Example(VonMises, [
{
'loc': torch.tensor(1.0, requires_grad=True),
'concentration': torch.tensor(10.0, requires_grad=True)
},
{
'loc': torch.tensor([0.0, math.pi / 2], requires_grad=True),
'concentration': torch.tensor([1.0, 10.0], requires_grad=True)
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([0.3], requires_grad=True)},
{'probs': 0.3},
{'logits': torch.tensor([0.], requires_grad=True)},
])
]
BAD_EXAMPLES = [
Example(Bernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
]),
Example(Beta, [
{
'concentration1': torch.tensor([0.0], requires_grad=True),
'concentration0': torch.tensor([0.0], requires_grad=True),
},
{
'concentration1': torch.tensor([-1.0], requires_grad=True),
'concentration0': torch.tensor([-2.0], requires_grad=True),
},
]),
Example(Geometric, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.3], requires_grad=True)},
{'probs': 1.00000001},
]),
Example(Categorical, [
{'probs': torch.tensor([[-0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[-1.0, 10.0], [0.0, -1.0]], requires_grad=True)},
]),
Example(Binomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(NegativeBinomial, [
{'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True),
'total_count': 10},
{'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True),
'total_count': 10},
]),
Example(Cauchy, [
{'loc': 0.0, 'scale': -1.0},
{'loc': torch.tensor([0.0]), 'scale': 0.0},
{'loc': torch.tensor([[0.0], [-2.0]]),
'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(Chi2, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(StudentT, [
{'df': torch.tensor([0.], requires_grad=True)},
{'df': torch.tensor([-2.], requires_grad=True)},
]),
Example(Dirichlet, [
{'concentration': torch.tensor([0.], requires_grad=True)},
{'concentration': torch.tensor([-2.], requires_grad=True)}
]),
Example(Exponential, [
{'rate': torch.tensor([0., 0.], requires_grad=True)},
{'rate': torch.tensor([-2.], requires_grad=True)}
]),
Example(FisherSnedecor, [
{
'df1': torch.tensor([0., 0.], requires_grad=True),
'df2': torch.tensor([-1., -100.], requires_grad=True),
},
{
'df1': torch.tensor([1., 1.], requires_grad=True),
'df2': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gamma, [
{
'concentration': torch.tensor([0., 0.], requires_grad=True),
'rate': torch.tensor([-1., -100.], requires_grad=True),
},
{
'concentration': torch.tensor([1., 1.], requires_grad=True),
'rate': torch.tensor([0., 0.], requires_grad=True),
}
]),
Example(Gumbel, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(HalfCauchy, [
{'scale': -1.0},
{'scale': 0.0},
{'scale': torch.tensor([[-0.000001], [1.0]])}
]),
Example(HalfNormal, [
{'scale': torch.tensor([0., 1.], requires_grad=True)},
{'scale': torch.tensor([1., -1.], requires_grad=True)},
]),
Example(LKJCholesky, [
{
'dim': -2,
'concentration': 0.1
},
{
'dim': 1,
'concentration': 2.,
},
{
'dim': 2,
'concentration': 0.,
},
]),
Example(Laplace, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(LogNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
]),
Example(MultivariateNormal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
},
]),
Example(Normal, [
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([0., 1.], requires_grad=True),
},
{
'loc': torch.tensor([1., 1.], requires_grad=True),
'scale': torch.tensor([1., -1.], requires_grad=True),
},
{
'loc': torch.tensor([1.0, 0.0], requires_grad=True),
'scale': torch.tensor([1e-5, -1e-5], requires_grad=True),
},
]),
Example(OneHotCategorical, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(OneHotCategoricalStraightThrough, [
{'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)},
{'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)},
]),
Example(Pareto, [
{
'scale': 0.0,
'alpha': 0.0
},
{
'scale': torch.tensor([0.0, 0.0], requires_grad=True),
'alpha': torch.tensor([-1e-5, 0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0]),
'alpha': -1.0
}
]),
Example(Poisson, [
{
'rate': torch.tensor([-0.1], requires_grad=True),
},
{
'rate': -1.0,
}
]),
Example(RelaxedBernoulli, [
{
'temperature': torch.tensor([1.5], requires_grad=True),
'probs': torch.tensor([1.7, 0.2, 0.4], requires_grad=True),
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([-1.0]),
}
]),
Example(RelaxedOneHotCategorical, [
{
'temperature': torch.tensor([0.5], requires_grad=True),
'probs': torch.tensor([[-0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True)
},
{
'temperature': torch.tensor([2.0]),
'probs': torch.tensor([[-1.0, 0.0], [-1.0, 1.1]])
}
]),
Example(TransformedDistribution, [
{
'base_distribution': Normal(0, 1),
'transforms': lambda x: x,
},
{
'base_distribution': Normal(0, 1),
'transforms': [lambda x: x],
},
]),
Example(Uniform, [
{
'low': torch.tensor([2.0], requires_grad=True),
'high': torch.tensor([2.0], requires_grad=True),
},
{
'low': torch.tensor([0.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
},
{
'low': torch.tensor([1.0], requires_grad=True),
'high': torch.tensor([0.0], requires_grad=True),
}
]),
Example(Weibull, [
{
'scale': torch.tensor([0.0], requires_grad=True),
'concentration': torch.tensor([0.0], requires_grad=True)
},
{
'scale': torch.tensor([1.0], requires_grad=True),
'concentration': torch.tensor([-1.0], requires_grad=True)
}
]),
Example(Wishart, [
{
'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True),
'df': torch.tensor([1.5], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': torch.tensor([3.], requires_grad=True),
},
{
'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True),
'df': 3.,
},
]),
Example(ContinuousBernoulli, [
{'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)},
{'probs': torch.tensor([-0.5], requires_grad=True)},
{'probs': 1.00001},
])
]
class TestJit(DistributionsTestCase):
|
import math
import numbers
import unittest
from collections import namedtuple
from itertools import product
from random import shuffle
from packaging import version
import torch
import torch.autograd.forward_ad as fwAD
from torch import inf, nan
from torch.autograd import grad
from torch.autograd.functional import jacobian
from torch.distributions import (
Bernoulli,
Beta,
Binomial,
Categorical,
Cauchy,
Chi2,
constraints,
ContinuousBernoulli,
Dirichlet,
Distribution,
Exponential,
ExponentialFamily,
FisherSnedecor,
Gamma,
Geometric,
Gumbel,
HalfCauchy,
HalfNormal,
Independent,
InverseGamma,
kl_divergence,
Kumaraswamy,
Laplace,
LKJCholesky,
LogisticNormal,
LogNormal,
LowRankMultivariateNormal,
MixtureSameFamily,
Multinomial,
MultivariateNormal,
NegativeBinomial,
Normal,
OneHotCategorical,
OneHotCategoricalStraightThrough,
Pareto,
Poisson,
RelaxedBernoulli,
RelaxedOneHotCategorical,
StudentT,
TransformedDistribution,
Uniform,
VonMises,
Weibull,
Wishart,
)
from torch.distributions.constraint_registry import transform_to
from torch.distributions.constraints import Constraint, is_dependent
from torch.distributions.dirichlet import _Dirichlet_backward
from torch.distributions.kl import _kl_expfamily_expfamily
from torch.distributions.transforms import (
AffineTransform,
CatTransform,
ExpTransform,
identity_transform,
StackTransform,
)
from torch.distributions.utils import (
lazy_property,
probs_to_logits,
tril_matrix_to_vec,
vec_to_tril_matrix,
)
from torch.nn.functional import softmax
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
gradcheck,
load_tests,
run_tests,
set_default_dtype,
set_rng_seed,
skipIfTorchDynamo,
TestCase,
)
load_tests = load_tests
TEST_NUMPY = True
import numpy as np
import scipy.special
import scipy.stats
Example = namedtuple("Example", ["Dist", "params"])
class TestJit(DistributionsTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_activation_checkpointing.py
|
forward
|
def forward(self, x):
return torch.sigmoid(self.linear(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class MockModule(torch.nn.Module):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
test_dynamo_does_not_trace_getattr_as_top_frame
|
def test_dynamo_does_not_trace_getattr_as_top_frame(self):
# inline_inbuilt_nn_modules is a proxy to emulate what FSDP tests do.
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
cnt = CompileCounterWithBackend("eager")
lin = torch.nn.Linear(1, 1)
mod = torch.nn.Sequential(lin, lin)
mod = CheckpointWrapper(mod)
mod._checkpoint_wrapped_module.a = torch.ones(1, 1)
def fn(x):
return mod(x) * mod.a
opt_fn = torch.compile(fn, backend=cnt, fullgraph=True)
x = torch.randn(1, 1)
self.assertEqual(opt_fn(x), fn(x))
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
class ActivationCheckpointingViaTagsTests(torch._dynamo.test_case.TestCase):
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_activation_checkpointing.py
|
fn
|
def fn(x, y):
return torch.utils.checkpoint.checkpoint(
gn, torch.sin(x), y, use_reentrant=True
)
x = torch.randn(4, 4, device="cuda", requires_grad=True)
y = torch.randn(4, 4, device="cuda", requires_grad=True)
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
bw_compiler = functools.partial(
count_ops, freq=3, op=torch.ops.aten.mm.default
) # mm recomputed in the bwd
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
self._validate(fn, backend, x, y)
|
import copy
import functools
import math
import unittest # noqa: F811
from importlib import import_module
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_CUDNN_ATTENTION,
SM90OrLater,
)
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils.checkpoint import (
checkpoint,
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
from torch._inductor import compile_fx
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as dist_checkpoint_wrapper,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_after_aot.py
|
strip_trailing_whitespace
|
def strip_trailing_whitespace(r):
return "\n".join([l.rstrip() for l in r.split("\n")])
class TestAfterAot(torch._dynamo.test_case.TestCase):
@unittest.skipIf(IS_FBCODE, "NotImplementedError")
def test_save_graph_repro(self):
# TODO: This triggers CUDA context initialization, even though
# it is CPU only
buf = io.StringIO()
args = [torch.randn(4)]
def f(x):
return (x * x,)
gm = make_fx(f)(*args)
with tempfile.TemporaryDirectory() as d:
save_graph_repro(buf, gm, args, "inductor_accuracy", save_dir=d)
r = buf.getvalue()
with report_compile_source_on_error():
exec(r, {"__compile_source__": r})
shutil.rmtree(os.path.join(d, "storages"))
# Should still work even without the save dir
with report_compile_source_on_error():
exec(r, {"__compile_source__": r})
@unittest.skipIf(sys.byteorder != "little", "checksum depends on endianness")
def test_dump_tensor(self):
def test(tensor, expected):
with tempfile.TemporaryDirectory() as d:
writer = InputWriter(d, stable_hash=True)
writer.tensor("x", tensor)
self.assertExpectedInline("\n".join(writer._lines), expected, skip=1)
reader = InputReader(d)
env = {"reader": reader, "torch": torch}
# TODO: assert no logs
exec("\n".join(writer._lines), env)
self.assertEqual(reader.args[0], tensor)
test(
torch.zeros(3, 4),
"""\
buf0 = reader.storage('c17fd92682ca5b304ac71074b558dda9e8eb4d66', 48)
reader.tensor(buf0, (3, 4), is_leaf=True) # x""",
)
test(
torch.ones(3, 4, dtype=torch.int32),
"""\
buf0 = reader.storage('7c221e2da0c58c700cc2996644dd13d042bd552e', 48, dtype_hint=torch.int32)
reader.tensor(buf0, (3, 4), dtype=torch.int32, is_leaf=True) # x""",
)
test(
torch.empty((3, 4, 5, 6), memory_format=torch.channels_last).fill_(2),
"""\
buf0 = reader.storage('49ebab3961d6221e64c4c72b0aefd976bdd2afc4', 1440)
reader.tensor(buf0, (3, 4, 5, 6), (120, 1, 24, 4), is_leaf=True) # x""",
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|
import io
import os
import shutil
import sys
import tempfile
import unittest
import torch._dynamo.test_case
from torch._dynamo.repro.after_aot import InputReader, InputWriter, save_graph_repro
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_utils import IS_FBCODE
from torch.utils._traceback import report_compile_source_on_error
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_after_aot.py
|
f
|
def f(x):
return (x * x,)
gm = make_fx(f)(*args)
with tempfile.TemporaryDirectory() as d:
save_graph_repro(buf, gm, args, "inductor_accuracy", save_dir=d)
r = buf.getvalue()
with report_compile_source_on_error():
exec(r, {"__compile_source__": r})
shutil.rmtree(os.path.join(d, "storages"))
# Should still work even without the save dir
with report_compile_source_on_error():
exec(r, {"__compile_source__": r})
|
import io
import os
import shutil
import sys
import tempfile
import unittest
import torch._dynamo.test_case
from torch._dynamo.repro.after_aot import InputReader, InputWriter, save_graph_repro
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_utils import IS_FBCODE
from torch.utils._traceback import report_compile_source_on_error
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
maybe_dupe_op
|
def maybe_dupe_op(x):
y = x + 1
z = x + 2
if x.numel() < 5:
return y, y
else:
return y, z
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF")
lib.define("maybe_dupe_op(Tensor a) -> (Tensor, Tensor)")
lib.impl("maybe_dupe_op", maybe_dupe_op, "CPU")
lib.impl("maybe_dupe_op", maybe_dupe_op, "Meta")
# this is just dealing with the fact that
# aot_module_simplified expects submods to always return tuples/lists
class WrapperModule(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
def forward(self, *args):
out = self.mod(*args)
if isinstance(out, (list, tuple)):
return out
return (out,)
|
def maybe_dupe_op(x):
y = x + 1
z = x + 2
if x.numel() < 5:
return y, y
else:
return y, z
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_LSTM
|
def test_LSTM(self):
# https://github.com/pytorch/torchdynamo/issues/1147
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
def forward(self, permute: torch.Tensor):
self_mod_model_lstm_lstm = self.self_mod_model_lstm_lstm(permute)
return (self_mod_model_lstm_lstm,)
mod = Repro()
aot_mod = torch._dynamo.optimize("aot_eager")(mod)
args = [((92, 4, 64), (1, 5888, 92), torch.float32, "cpu", False)]
args = [
rand_strided(sh, st, dt, dev).requires_grad_(rg)
for (sh, st, dt, dev, rg) in args
]
eager_result = mod(*args)
aot_result = aot_mod(*args)
self.assertTrue(torch._dynamo.testing.same(eager_result, aot_result))
|
def test_LSTM(self):
# https://github.com/pytorch/torchdynamo/issues/1147
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
def forward(self, permute: torch.Tensor):
self_mod_model_lstm_lstm = self.self_mod_model_lstm_lstm(permute)
return (self_mod_model_lstm_lstm,)
mod = Repro()
aot_mod = torch._dynamo.optimize("aot_eager")(mod)
args = [((92, 4, 64), (1, 5888, 92), torch.float32, "cpu", False)]
args = [
rand_strided(sh, st, dt, dev).requires_grad_(rg)
for (sh, st, dt, dev, rg) in args
]
eager_result = mod(*args)
aot_result = aot_mod(*args)
self.assertTrue(torch._dynamo.testing.same(eager_result, aot_result))
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_call_fn_with_non_const_inputs_aot_unsafe
|
def test_call_fn_with_non_const_inputs_aot_unsafe(self):
class ModuleSpecialFwd(torch.nn.Module):
def _some_bad_fwd(self, param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
def forward(self, x, y):
return self._some_bad_fwd(x, y)
# Init mod
mod = ModuleSpecialFwd()
x = torch.nn.Parameter(torch.randn(4))
y = torch.randn([4])
# Run it for real
real = mod(x, y)
# Run it in export
graph, _ = torch._dynamo.export(mod, x, y)
# Assert equal
self.assertTrue(torch._dynamo.testing.same(real, graph(x, y)))
# Run exported graph with AOT
aot_fn = torch._dynamo.optimize("aot_eager")(graph)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def test_call_fn_with_non_const_inputs_aot_unsafe(self):
class ModuleSpecialFwd(torch.nn.Module):
def _some_bad_fwd(self, param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
def forward(self, x, y):
return self._some_bad_fwd(x, y)
# Init mod
mod = ModuleSpecialFwd()
x = torch.nn.Parameter(torch.randn(4))
y = torch.randn([4])
# Run it for real
real = mod(x, y)
# Run it in export
graph, _ = torch._dynamo.export(mod)(x, y)
# Assert equal
self.assertTrue(torch._dynamo.testing.same(real, graph(x, y)))
# Run exported graph with AOT
aot_fn = torch._dynamo.optimize("aot_eager")(graph)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_requires_grad_fake_via_dynamo_recompiles
|
def test_requires_grad_fake_via_dynamo_recompiles(self):
class F(torch.nn.Module):
def forward(self, x, y):
return (x + y,)
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
z = torch.randn(3, 3, requires_grad=False)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def test_requires_grad_fake_via_dynamo_recompiles(self):
class F(torch.nn.Module):
def forward(self, x, y):
return (x + y,)
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
z = torch.randn(3, 3, requires_grad=False)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_mutation
|
def test_mutation(self):
# https://github.com/pytorch/torchdynamo/issues/1301
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def test_mutation(self):
# https://github.com/pytorch/torchdynamo/issues/1301
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_call_fn_with_non_const_inputs_aot_safe
|
def test_call_fn_with_non_const_inputs_aot_safe(self):
class ModuleSpecialFwd(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=20, kernel_size=(5, 5)
)
def _conv_forward(self, x):
return self.conv._conv_forward(x, self.conv.weight, self.conv.bias)
def forward(self, x):
return self._conv_forward(x)
# Init mod
mod = ModuleSpecialFwd()
rx = torch.randn([3, 10, 10])
# Run it for real
real = mod(rx)
# Run it in export
graph, _ = torch._dynamo.export(mod, rx)
# Run exported graph with AOT
self.assertTrue(torch._dynamo.testing.same(real, graph(rx)))
aot_fn = torch._dynamo.optimize("aot_eager")(graph)
aot_fn(rx)
|
def test_call_fn_with_non_const_inputs_aot_safe(self):
class ModuleSpecialFwd(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=20, kernel_size=(5, 5)
)
def _conv_forward(self, x):
return self.conv._conv_forward(x, self.conv.weight, self.conv.bias)
def forward(self, x):
return self._conv_forward(x)
# Init mod
mod = ModuleSpecialFwd()
rx = torch.randn([3, 10, 10])
# Run it for real
real = mod(rx)
# Run it in export
graph, _ = torch._dynamo.export(mod)(rx)
# Run exported graph with AOT
self.assertTrue(torch._dynamo.testing.same(real, graph(rx)))
aot_fn = torch._dynamo.optimize("aot_eager")(graph)
aot_fn(rx)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
guard_fail_fn
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertEqual(
failure_reason,
"tensor 'y' requires_grad mismatch. expected requires_grad=1",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
backward
|
def backward(ctx, grad):
(x,) = ctx.saved_tensors
return x, grad
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Test(torch.autograd.Function):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
maybe_dupe_op
|
def maybe_dupe_op(x):
y = x + 1
z = x + 2
if x.numel() < 5:
return y, y
else:
return y, z
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF")
lib.define("maybe_dupe_op(Tensor a) -> (Tensor, Tensor)")
lib.impl("maybe_dupe_op", maybe_dupe_op, "CPU")
lib.impl("maybe_dupe_op", maybe_dupe_op, "Meta")
# this is just dealing with the fact that
# aot_module_simplified expects submods to always return tuples/lists
class WrapperModule(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
def forward(self, *args):
out = self.mod(*args)
if isinstance(out, (list, tuple)):
return out
return (out,)
|
def maybe_dupe_op(x):
y = x + 1
z = x + 2
if x.numel() < 5:
return y, y
else:
return y, z
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
compile_submod
|
def compile_submod(input_mod, args):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
class WrapperModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.original = input_mod
self.submod = aot_module_simplified(input_mod, args, nop)
def forward(self, *args):
return self.submod(*args)
return WrapperModule()
|
def compile_submod(input_mod, args):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
class WrapperModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.original = input_mod
self.submod = aot_module_simplified(input_mod, args, nop)
def forward(self, *args):
return self.submod(*args)
return WrapperModule()
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
__init__
|
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class Repro(torch.nn.Module):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd.py
|
test_nn_parameter_construction
|
def test_nn_parameter_construction(self):
# https://github.com/pytorch/pytorch/issues/99569
def fn(x):
y = x.sin()
z = torch.nn.Parameter(torch.ones(1))
return y + z
x = torch.rand((4, 4))
opt_fn = torch._dynamo.optimize("aot_eager")(fn)
self.assertTrue(torch._dynamo.testing.same(fn(x), opt_fn(x)))
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd.py
|
fn
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
with self.assertRaisesRegex(
RuntimeError,
"a leaf Variable that requires grad is being used in an in-place operation.",
):
aot_fn(x, y)
|
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
|
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._dynamo.test_case import run_tests
|
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import CompileCounter, expectedFailureDynamic, rand_strided
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
from torch._functorch.aot_autograd import aot_export_joint_simple
import torch._functorch.config as _config
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/dynamo/test_aot_autograd_cache.py
|
fn
|
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
import os
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.