|
import datasets |
|
import json |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
USERNAME = "Dakhoo" |
|
REPO_NAME = "L2T-NeurIPS-2023" |
|
LOCAL = False |
|
|
|
_CITATION = """\ |
|
@article{bender2023learning, |
|
title={Learning to Taste: A Multimodal Wine Dataset}, |
|
author={Bender, Thoranna and S{\o}rensen, Simon M{\o}e and Kashani, Alireza and Hjorleifsson, K Eldjarn and Hyldig, Grethe and Hauberg, S{\o}ren and Belongie, Serge and Warburg, Frederik}, |
|
journal={arXiv preprint arXiv:2308.16900}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = ( |
|
"The dataset encompasses 897k images of wine labels and 824k reviews of wines " |
|
"curated from the Vivino platform. It has over 350k unique vintages, annotated " |
|
"with year, region, rating, alcohol percentage, price, and grape composition. " |
|
"We obtained fine-grained flavor annotations on a subset by conducting a wine-tasting experiment " |
|
"with 256 participants who were asked to rank wines based on their similarity in flavor, " |
|
"resulting in more than 5k pairwise flavor distances." |
|
) |
|
|
|
_HOMEPAGE = "https://https://thoranna.github.io/learning_to_taste/" |
|
|
|
_LICENSE = """\ |
|
LICENSE AGREEMENT |
|
================= |
|
- WineSensed by Thoranna Bender, Simon Søresen, Alireza Kashani, Kristjan Eldjarn, Grethe Hyldig, |
|
Søren Hauberg, Serge Belongie, Frederik Warburg is licensed under a CC BY-NC-ND 4.0 Licence |
|
""" |
|
|
|
reviews = ['Deliciously fragrant xxx', |
|
'Barolo & Brunello Tasting with Janne', |
|
'Oak', |
|
'Muito bom. Foi uma agradável surpresa. Óptimo sabor e guloso a acompanhar o almoço. Recomendo. ', |
|
'Flauw zwoele smaak zonder al teveel afdronk. Voor de prijs oké zonder meer. Ik ben geen fan. ', |
|
'Very different, very pink. Quite fruity can feel at the back sides of tongue ', |
|
'Honey, apricot, tinned peaches in syrup. Oily, silky texture. Sweetness is well balanced with acidity. ', |
|
'Amazing fruit and great finish. ', |
|
'Dry, floral nose with fruit on the back', |
|
'This Riesling Kabinett was good. Had a few minor problems, but cant complain to much at $13 ', |
|
'Such an unusual drop, honey, spice notes. Drank it chilled. Nose like the skin on a sauccison...!', |
|
'Very sweet and light bubbly red wine ', |
|
'Great value. Really enjoyable wine and went down a treat with a steak 👌🏻', |
|
'', |
|
'Quite refreshing with a light citrus taste.', |
|
'Pours in dark amber colour with excellant lacing. Aroma of raisins, caramel. Highly sweet, medium sour, light bitterness, taste of nutts, raisins. Full bodied, thick feel, long lasting aftertaste', |
|
'Light, dry, grapefruit flavor, delicious '] |
|
|
|
|
|
_REPO = f"https://huggingface.co/datasets/{USERNAME}/{REPO_NAME}/resolve/main/" |
|
_REPO = "https://huggingface.co/datasets/Dakhoo/L2T-NeurIPS-2023/resolve/main/" |
|
if LOCAL: |
|
_REPO = f"/Users/alka/Devel/L2T-NeurIPS-2023" |
|
|
|
class WineSensedConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for WineSensed.""" |
|
|
|
def __init__(self, data_url, metadata_urls, **kwargs): |
|
"""BuilderConfig for WineSensed. |
|
Args: |
|
data_url: `string`, url to download the zip file from. |
|
matadata_urls: dictionary with 'train' containing the metadata URLs |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(WineSensedConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.data_url = data_url |
|
self.metadata_urls = metadata_urls |
|
|
|
class WineSensed(datasets.GeneratorBasedBuilder): |
|
"""WineSensed Images dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
WineSensedConfig( |
|
name="vintages", |
|
description="All tasted vintages along with their attributions.", |
|
data_url=f"{_REPO}/data/vintages/vintages_dataset.tar.gz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/data/vintages/train.txt", |
|
}, |
|
), |
|
WineSensedConfig( |
|
name="napping_participants", |
|
description="Napping and Participants datasets", |
|
data_url=f"{_REPO}/data/napping_participants/napping_participants.tar.gz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/data/napping_participants/train.txt", |
|
}, |
|
), |
|
WineSensedConfig( |
|
name="small", |
|
description="Small dataset.", |
|
data_url=f"{_REPO}/data/small/small.tar.gz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/data/small/small_dataset.jsonl", |
|
}, |
|
), |
|
WineSensedConfig( |
|
name="wt_session", |
|
description="Image-Review dataset.", |
|
data_url=f"{_REPO}/data/wt_session/wt_session.tar.gz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/data/wt_session/wt_session.jsonl", |
|
}, |
|
), |
|
WineSensedConfig( |
|
name="all", |
|
description="All images.", |
|
data_url=f"{_REPO}/data/all/all.tar.gz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/data/all/all_dataset.jsonl", |
|
}, |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
if self.config.name == 'vintages': |
|
features = datasets.Features( |
|
{ |
|
"vintage_id": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
"winery_id": datasets.Value("string"), |
|
"wine_alcohol": datasets.Value("string"), |
|
"country": datasets.Value("string"), |
|
"region": datasets.Value("string"), |
|
"price": datasets.Value("string"), |
|
"rating": datasets.Value("string"), |
|
"grape": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == 'napping_participants': |
|
features = datasets.Features( |
|
{ |
|
"event_name": datasets.Value("string"), |
|
"session_round_name": datasets.Value("string"), |
|
"experiment_no": datasets.Value("string"), |
|
"round_id": datasets.Value("string"), |
|
"participant_id": datasets.Value("string"), |
|
"experiment_id": datasets.Value("string"), |
|
"coor1": datasets.Value("string"), |
|
"coor2": datasets.Value("string"), |
|
"color": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"vintage_id": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
"winery_id": datasets.Value("string"), |
|
"wine_alcohol": datasets.Value("string"), |
|
"country": datasets.Value("string"), |
|
"region": datasets.Value("string"), |
|
"price": datasets.Value("string"), |
|
"rating": datasets.Value("string"), |
|
"grape": datasets.Value("string"), |
|
"review": datasets.Value("string"), |
|
"event_name": datasets.Value("string"), |
|
"session_round_name": datasets.Value("string"), |
|
"experiment_no": datasets.Value("string"), |
|
"round_id": datasets.Value("string"), |
|
"participant_id": datasets.Value("string"), |
|
"experiment_id": datasets.Value("string"), |
|
"coor1": datasets.Value("string"), |
|
"coor2": datasets.Value("string"), |
|
"color": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION + self.config.description, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(self.config.data_url) |
|
metadata_paths = dl_manager.download(self.config.metadata_urls) |
|
record_iters = dl_manager.iter_archive(archive_path) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"records": record_iters, |
|
"metadata_path": metadata_paths["train"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, records, metadata_path): |
|
"""Generate images and metadata for splits.""" |
|
|
|
if self.config.name == 'vintages': |
|
for idx, (filepath, image) in enumerate(records): |
|
file_jsonl = image.read() |
|
jsonl_string = file_jsonl.decode('utf-8') |
|
json_objects = jsonl_string.strip().split('\n') |
|
|
|
id = 0 |
|
for json_object in json_objects: |
|
data_dict = json.loads(json_object) |
|
yield id, { |
|
"vintage_id": data_dict['vintage_id'], |
|
"year": data_dict['year'], |
|
"winery_id": data_dict['winery_id'], |
|
"wine_alcohol": data_dict['wine_alcohol'], |
|
"country": data_dict['country'], |
|
"region": data_dict['region'], |
|
"price": data_dict['price'], |
|
"rating": data_dict['rating'], |
|
"grape": data_dict['grape'], |
|
} |
|
id += 1 |
|
|
|
elif self.config.name == 'napping_participants': |
|
for idx, (filepath, image) in enumerate(records): |
|
file_jsonl = image.read() |
|
jsonl_string = file_jsonl.decode('utf-8') |
|
json_objects = jsonl_string.strip().split('\n') |
|
|
|
id = 0 |
|
for json_object in json_objects: |
|
data_dict = json.loads(json_object) |
|
yield id, { |
|
"event_name": data_dict['event_name'], |
|
"session_round_name": data_dict['session_round_name'], |
|
"experiment_no": data_dict['experiment_no'], |
|
"round_id": data_dict['round_id'], |
|
"participant_id": data_dict['participant_id'], |
|
"experiment_id": data_dict['experiment_id'], |
|
"coor1": data_dict['coor1'], |
|
"coor2": data_dict['coor2'], |
|
"color": data_dict['color'], |
|
} |
|
id += 1 |
|
|
|
else: |
|
metadata_dict = self._process_images_jsonl_file(metadata_path) |
|
|
|
for idx, (filepath, image) in enumerate(records): |
|
yield idx, { |
|
"image": {"path": filepath, "bytes": image.read()}, |
|
"vintage_id": metadata_dict.get(filepath.split('/')[1], {}).get('vintage_id', None), |
|
"year": metadata_dict.get(filepath.split('/')[1], {}).get('year', None), |
|
"winery_id": metadata_dict.get(filepath.split('/')[1], {}).get('winery_id', None), |
|
"wine_alcohol": metadata_dict.get(filepath.split('/')[1], {}).get('wine_alcohol', None), |
|
"country": metadata_dict.get(filepath.split('/')[1], {}).get('country', None), |
|
"region": metadata_dict.get(filepath.split('/')[1], {}).get('region', None), |
|
"price": metadata_dict.get(filepath.split('/')[1], {}).get('price', None), |
|
"rating": metadata_dict.get(filepath.split('/')[1], {}).get('rating', None), |
|
"grape": metadata_dict.get(filepath.split('/')[1], {}).get('grape', None), |
|
"review": metadata_dict.get(filepath.split('/')[1], {}).get('review', None), |
|
"event_name": metadata_dict.get(filepath.split('/')[1], {}).get('event_name', None), |
|
"session_round_name": metadata_dict.get(filepath.split('/')[1], {}).get('session_round_name', None), |
|
"experiment_no": metadata_dict.get(filepath.split('/')[1], {}).get('experiment_no', None), |
|
"round_id": metadata_dict.get(filepath.split('/')[1], {}).get('round_id', None), |
|
"participant_id": metadata_dict.get(filepath.split('/')[1], {}).get('participant_id', None), |
|
"experiment_id": metadata_dict.get(filepath.split('/')[1], {}).get('experiment_id', None), |
|
"coor1": metadata_dict.get(filepath.split('/')[1], {}).get('coor1', None), |
|
"coor2": metadata_dict.get(filepath.split('/')[1], {}).get('coor2', None), |
|
"color": metadata_dict.get(filepath.split('/')[1], {}).get('color', None), |
|
} |
|
|
|
def _process_images_jsonl_file(self, jsonl_file_path): |
|
"""A utility function defined within the WineSensed class. |
|
This function reads and processes a JSONL (JSON Lines) file containing metadata about images and reviews. |
|
It iterates through the lines in the JSONL file, parsing each line as JSON data. |
|
For each JSON object in the file, it extracts relevant information such as image paths, reviews, vintage IDs, and more. |
|
The extracted information is stored in a dictionary called metadata_dict, which is returned by the function. """ |
|
metadata_dict = {} |
|
|
|
with open(jsonl_file_path, 'r', encoding="utf-8") as jsonl_file: |
|
for line in jsonl_file: |
|
try: |
|
data = json.loads(line) |
|
image = data.get('image', None) |
|
|
|
|
|
if image is not None: |
|
metadata_dict[image] = { |
|
"review": data.get('review', None), |
|
"vintage_id": data.get('vintage_id', None), |
|
"experiment_id": data.get('experiment_id', None), |
|
"year": data.get('year', None), |
|
"winery_id": data.get('winery_id', None), |
|
"wine_alcohol": data.get('wine_alcohol', None), |
|
"country": data.get('country', None), |
|
"region": data.get('region', None), |
|
"price": data.get('price', None), |
|
"rating": data.get('rating', None), |
|
"grape": data.get('grape', None), |
|
"event_name": data.get('event_name', None), |
|
"session_round_name": data.get('session_round_name', None), |
|
"experiment_no": data.get('experiment_no', None), |
|
"round_id": data.get('round_id', None), |
|
"participant_id": data.get('participant_id', None), |
|
"experiment_id": data.get('experiment_id', None), |
|
"coor1": data.get('coor1', None), |
|
"coor2": data.get('coor2', None), |
|
"color": data.get('color', None), |
|
} |
|
except json.JSONDecodeError as e: |
|
print(f"Error parsing JSON: {e}") |
|
|
|
return metadata_dict |