|
|
""" |
|
|
Programmatic Index Creation |
|
|
=========================== |
|
|
Use this script to create an index from a DataFrame without the web interface. |
|
|
|
|
|
Example usage: |
|
|
python create_index.py --input data.csv --sequence-column text |
|
|
|
|
|
Or use programmatically: |
|
|
from create_index import create_index_from_dataframe |
|
|
import pandas as pd |
|
|
|
|
|
df = pd.DataFrame({ |
|
|
'sequence': ['Hello world', 'Machine learning is great', ...], |
|
|
'category': ['greeting', 'tech', ...], |
|
|
'id': [1, 2, ...] |
|
|
}) |
|
|
|
|
|
create_index_from_dataframe(df, sequence_column='sequence') |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import pickle |
|
|
from pathlib import Path |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
from pickle import dump, load |
|
|
import tiktoken |
|
|
import faiss |
|
|
import torch.nn as nn |
|
|
from x_transformers import TransformerWrapper, Encoder |
|
|
import torch |
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
n_gpus = torch.cuda.device_count() |
|
|
print(f"Using device: {device}") |
|
|
print(f"Available GPUs: {n_gpus}") |
|
|
for i in range(n_gpus): |
|
|
print(f" GPU {i}: {torch.cuda.get_device_name(i)}") |
|
|
|
|
|
|
|
|
class GenomicTransformer(nn.Module): |
|
|
def __init__(self, vocab_size=40000, hidden_dim=32, layers=2, heads=3, max_length=6000): |
|
|
super().__init__() |
|
|
self.model = TransformerWrapper( |
|
|
num_tokens=vocab_size, |
|
|
max_seq_len=max_length, |
|
|
attn_layers=Encoder( |
|
|
dim=hidden_dim, |
|
|
depth=layers, |
|
|
heads=heads, |
|
|
rotary_pos_emb=True, |
|
|
attn_orthog_projected_values=True, |
|
|
attn_orthog_projected_values_per_head=True, |
|
|
attn_flash=True |
|
|
) |
|
|
) |
|
|
|
|
|
def forward(self, input_ids, return_embeddings=False): |
|
|
logits = self.model(input_ids, return_embeddings=return_embeddings) |
|
|
return logits |
|
|
|
|
|
|
|
|
|
|
|
DATA_DIR = Path("data") |
|
|
DATA_DIR.mkdir(exist_ok=True) |
|
|
INDEX_PATH = DATA_DIR / "faiss.index" |
|
|
METADATA_PATH = DATA_DIR / "metadata.pkl" |
|
|
EMBEDDINGS_PATH = DATA_DIR / "embeddings.npy" |
|
|
EMBEDDING_MODEL = "all-MiniLM-L6-v2" |
|
|
|
|
|
pattern = load(open("/user/hassanahmed.hassan/u21055/.project/dir.project/towards_better_genomic_models/data/tokenizer_components_bpe_with_repeats.pkl", "rb"))['pattern'] |
|
|
mergable_ranks = load(open("/user/hassanahmed.hassan/u21055/.project/dir.project/towards_better_genomic_models/data/tokenizer_components_bpe_with_repeats.pkl", "rb"))['mergable_ranks'] |
|
|
|
|
|
recreated_enc = tiktoken.Encoding( |
|
|
name="genomic_bpe_recreated", |
|
|
pat_str=pattern, |
|
|
mergeable_ranks=mergable_ranks, |
|
|
special_tokens={} |
|
|
) |
|
|
|
|
|
|
|
|
MODEL = GenomicTransformer( |
|
|
vocab_size=40_000, hidden_dim=512, layers=12, heads=8 |
|
|
) |
|
|
|
|
|
|
|
|
if n_gpus > 1: |
|
|
print(f"Using DataParallel across {n_gpus} GPUs") |
|
|
MODEL = nn.DataParallel(MODEL) |
|
|
|
|
|
MODEL = MODEL.to(device) |
|
|
MODEL.eval() |
|
|
|
|
|
|
|
|
def create_index_from_dataframe( |
|
|
df: pd.DataFrame, |
|
|
sequence_column: str = "sequence", |
|
|
model=MODEL, |
|
|
encoder=recreated_enc, |
|
|
batch_size: int = 8 |
|
|
) -> dict: |
|
|
""" |
|
|
Create a FAISS index from a pandas DataFrame. |
|
|
|
|
|
Args: |
|
|
df: DataFrame containing sequences and metadata |
|
|
sequence_column: Name of the column containing text sequences |
|
|
model: The transformer model to use |
|
|
encoder: The tokenizer/encoder |
|
|
batch_size: Batch size for encoding (increase for multi-GPU) |
|
|
|
|
|
Returns: |
|
|
dict with index statistics |
|
|
""" |
|
|
if sequence_column not in df.columns: |
|
|
raise ValueError(f"Column '{sequence_column}' not found. Available: {list(df.columns)}") |
|
|
|
|
|
|
|
|
sequences = df[sequence_column].astype(str).tolist()[:10] |
|
|
df = df.iloc[:10].copy() |
|
|
df["__sequence__"] = sequences |
|
|
|
|
|
|
|
|
print(f"Creating embeddings for {len(sequences)} sequences...") |
|
|
encodings = encoder.encode_batch(sequences) |
|
|
embeddings = [] |
|
|
print(f"Total encodings: {len(encodings)}") |
|
|
|
|
|
|
|
|
effective_batch_size = batch_size * n_gpus if n_gpus > 1 else batch_size |
|
|
print(f"Using effective batch size: {effective_batch_size}") |
|
|
|
|
|
for i in tqdm(range(0, len(encodings), effective_batch_size)): |
|
|
batch_encodings = encodings[i:i+effective_batch_size] |
|
|
|
|
|
max_len = max(len(enc) for enc in batch_encodings) |
|
|
batch_encodings = [enc + [0]*(max_len - len(enc)) for enc in batch_encodings] |
|
|
|
|
|
|
|
|
batch_tensor = torch.tensor(batch_encodings).long().to(device) |
|
|
print(f"Batch tensor shape: {batch_tensor.shape}") |
|
|
print(f"Sample batch tensor: {batch_tensor[0][:10]}") |
|
|
|
|
|
with torch.no_grad(): |
|
|
print("Generating embeddings...") |
|
|
batch_embeddings = model(batch_tensor, return_embeddings=True) |
|
|
print(f"Raw batch embeddings shape: {batch_embeddings.shape}") |
|
|
|
|
|
batch_embeddings = batch_embeddings.mean(dim=1).cpu().numpy().tolist() |
|
|
print(f"Batch embeddings shape: {np.array(batch_embeddings).shape}") |
|
|
|
|
|
if i == 0: |
|
|
embeddings = batch_embeddings |
|
|
else: |
|
|
embeddings = embeddings + batch_embeddings |
|
|
|
|
|
embeddings = np.array(embeddings) |
|
|
embeddings = embeddings.astype(np.float32) |
|
|
|
|
|
|
|
|
dimension = embeddings.shape[1] |
|
|
index = faiss.IndexFlatIP(dimension) |
|
|
index.add(embeddings) |
|
|
|
|
|
|
|
|
print("Saving index to disk...") |
|
|
faiss.write_index(index, str(INDEX_PATH)) |
|
|
with open(METADATA_PATH, "wb") as f: |
|
|
pickle.dump(df, f) |
|
|
np.save(EMBEDDINGS_PATH, embeddings) |
|
|
|
|
|
stats = { |
|
|
"documents_indexed": index.ntotal, |
|
|
"embedding_dimension": dimension, |
|
|
"model": 'MODEL', |
|
|
"index_path": str(INDEX_PATH), |
|
|
"metadata_path": str(METADATA_PATH), |
|
|
"gpus_used": n_gpus |
|
|
} |
|
|
|
|
|
print(f"Index created successfully!") |
|
|
print(f" - Documents: {stats['documents_indexed']}") |
|
|
print(f" - Dimensions: {stats['embedding_dimension']}") |
|
|
print(f" - GPUs used: {stats['gpus_used']}") |
|
|
|
|
|
return stats |
|
|
|
|
|
|
|
|
def search_index( |
|
|
query: str, |
|
|
top_k: int = 10, |
|
|
model=MODEL, |
|
|
encoder=recreated_enc |
|
|
) -> list[dict]: |
|
|
""" |
|
|
Search the index for similar sequences. |
|
|
""" |
|
|
if not INDEX_PATH.exists(): |
|
|
raise FileNotFoundError("No index found. Create one first with create_index_from_dataframe()") |
|
|
|
|
|
|
|
|
index = faiss.read_index(str(INDEX_PATH)) |
|
|
with open(METADATA_PATH, "rb") as f: |
|
|
metadata = pickle.load(f) |
|
|
|
|
|
|
|
|
encodings = encoder.encode_ordinary(query) |
|
|
query_tensor = torch.tensor([encodings]).long().to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
query_embedding = model(query_tensor, return_embeddings=True).mean(dim=1).cpu().numpy() |
|
|
|
|
|
query_embedding = query_embedding.astype(np.float32) |
|
|
|
|
|
|
|
|
k = min(top_k, index.ntotal) |
|
|
scores, indices = index.search(query_embedding, k) |
|
|
|
|
|
|
|
|
results = [] |
|
|
for score, idx in zip(scores[0], indices[0]): |
|
|
if idx == -1: |
|
|
continue |
|
|
|
|
|
row = metadata.iloc[idx].to_dict() |
|
|
sequence = row.pop("__sequence__", "") |
|
|
|
|
|
results.append({ |
|
|
"score": float(score), |
|
|
"sequence": sequence, |
|
|
"metadata": row |
|
|
}) |
|
|
|
|
|
return results |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description="Create semantic search index from CSV") |
|
|
parser.add_argument("--sequence-column", "-c", default="seq_with_repeat_tokens", help="Column containing sequences") |
|
|
parser.add_argument("--batch-size", "-b", type=int, default=8, help="Batch size per GPU") |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
df = pd.read_parquet("/user/hassanahmed.hassan/u21055/.project/dir.project/towards_better_genomic_models/data/sample.parquet") |
|
|
print(f"Loaded {len(df)} rows with columns: {list(df.columns)}") |
|
|
|
|
|
create_index_from_dataframe(df, args.sequence_column, MODEL, recreated_enc, batch_size=args.batch_size) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |