Upload DWIE.py
Browse files
DWIE.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
|
2 |
+
# Use the original source from https://huggingface.co/datasets/DFKI-SLT/science_ie/raw/main/science_ie.py
|
3 |
+
|
4 |
+
|
5 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
"""DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document."""
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
from datasets import DownloadManager
|
22 |
+
import os
|
23 |
+
import json
|
24 |
+
import requests
|
25 |
+
from typing import Optional, List, Union
|
26 |
+
import argparse
|
27 |
+
import hashlib
|
28 |
+
from collections import OrderedDict
|
29 |
+
from time import sleep
|
30 |
+
|
31 |
+
#from dataset.utils.tokenizer import TokenizerCPN
|
32 |
+
|
33 |
+
|
34 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
35 |
+
_CITATION = """\
|
36 |
+
@article{ZAPOROJETS2021102563,
|
37 |
+
title = {{DWIE}: An entity-centric dataset for multi-task document-level information extraction},
|
38 |
+
journal = {Information Processing & Management},
|
39 |
+
volume = {58},
|
40 |
+
number = {4},
|
41 |
+
pages = {102563},
|
42 |
+
year = {2021},
|
43 |
+
issn = {0306-4573},
|
44 |
+
doi = {https://doi.org/10.1016/j.ipm.2021.102563},
|
45 |
+
url = {https://www.sciencedirect.com/science/article/pii/S0306457321000662},
|
46 |
+
author = {Klim Zaporojets and Johannes Deleu and Chris Develder and Thomas Demeester}
|
47 |
+
}
|
48 |
+
"""
|
49 |
+
|
50 |
+
# You can copy an official description
|
51 |
+
_DESCRIPTION = """\
|
52 |
+
DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities
|
53 |
+
on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start
|
54 |
+
from the detection and classification of named entity mentions in individual sentences. Also, the dataset was
|
55 |
+
randomly sampled from a news platform (English online content from Deutsche Welle), and the annotation scheme
|
56 |
+
was generated to cover that content. This makes the setting more realistic than in datasets with pre-determined
|
57 |
+
annotation schemes, and non-uniform sampling of content to obtain balanced annotations."""
|
58 |
+
|
59 |
+
# Add a link to an official homepage for the dataset here
|
60 |
+
_HOMEPAGE = "https://github.com/klimzaporojets/DWIE"
|
61 |
+
|
62 |
+
# Add the licence for the dataset here if you can find it
|
63 |
+
_LICENSE = ""
|
64 |
+
|
65 |
+
# Add link to the official dataset URLs here
|
66 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
67 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
68 |
+
_URLS = {"Task_1":
|
69 |
+
{
|
70 |
+
"url":"https://github.com/klimzaporojets/DWIE/archive/refs/heads/master.zip"
|
71 |
+
}
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
class DWIE(datasets.GeneratorBasedBuilder):
|
77 |
+
"""
|
78 |
+
DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document.
|
79 |
+
"""
|
80 |
+
|
81 |
+
VERSION = datasets.Version("1.1.0")
|
82 |
+
|
83 |
+
BUILDER_CONFIGS = [
|
84 |
+
datasets.BuilderConfig(name="Task_1", version=VERSION,
|
85 |
+
description="Relation classification"),
|
86 |
+
]
|
87 |
+
DEFAULT_CONFIG_NAME = "Task_1"
|
88 |
+
|
89 |
+
def _info(self):
|
90 |
+
features = datasets.Features(
|
91 |
+
{
|
92 |
+
"id": datasets.Value("string"),
|
93 |
+
"content": datasets.Value("string"),
|
94 |
+
"tags": datasets.Value("string"),
|
95 |
+
"mentions": [
|
96 |
+
{
|
97 |
+
"begin": datasets.Value("int32"),
|
98 |
+
"end": datasets.Value("int32"),
|
99 |
+
"text": datasets.Value("string"),
|
100 |
+
"concept": datasets.Value("int32"),
|
101 |
+
"candidates" : datasets.Sequence(datasets.Value("string")),
|
102 |
+
"scores": datasets.Sequence(datasets.Value("float32"))
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"concepts": [
|
106 |
+
{
|
107 |
+
"concept": datasets.Value("int32"),
|
108 |
+
"text": datasets.Value("string"),
|
109 |
+
"keyword": datasets.Value("bool"),
|
110 |
+
"count": datasets.Value("int32"),
|
111 |
+
"link": datasets.Value("string"),
|
112 |
+
"tags": datasets.Sequence(datasets.Value("string")),
|
113 |
+
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"relations": [
|
117 |
+
{
|
118 |
+
"s": datasets.Value("int32"),
|
119 |
+
"p": datasets.Value("string"),
|
120 |
+
"o": datasets.Value("int32"),
|
121 |
+
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"frames": [
|
125 |
+
{
|
126 |
+
"type": datasets.Value("string"),
|
127 |
+
"slots": [{
|
128 |
+
"name": datasets.Value("string"),
|
129 |
+
"value":datasets.Value("int32")
|
130 |
+
}]
|
131 |
+
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"iptc": datasets.Sequence(datasets.Value("string"))
|
135 |
+
|
136 |
+
}
|
137 |
+
)
|
138 |
+
|
139 |
+
return datasets.DatasetInfo(
|
140 |
+
# This is the description that will appear on the datasets page.
|
141 |
+
description=_DESCRIPTION,
|
142 |
+
# This defines the different columns of the dataset and their types
|
143 |
+
features=features, # Here we define them above because they are different between the two configurations
|
144 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
145 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
146 |
+
# supervised_keys=("sentence", "label"),
|
147 |
+
# Homepage of the dataset for documentation
|
148 |
+
homepage=_HOMEPAGE,
|
149 |
+
# License for the dataset if available
|
150 |
+
license=_LICENSE,
|
151 |
+
# Citation for the dataset
|
152 |
+
citation=_CITATION,
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_generators(self, dl_manager):
|
156 |
+
|
157 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
158 |
+
|
159 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
160 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
161 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
162 |
+
|
163 |
+
urls = _URLS[self.config.name]
|
164 |
+
downloaded = dl_manager.download_and_extract(_URLS)
|
165 |
+
article_id_to_url_json= json.load(open(downloaded['Task_1']['url'] + '/DWIE-master/data/article_id_to_url.json'))
|
166 |
+
ids_to_new_ids = dict()
|
167 |
+
# some ids seem to be different, for now only this one:
|
168 |
+
ids_to_new_ids[18525950] = 19026607
|
169 |
+
|
170 |
+
should_tokenize = False
|
171 |
+
|
172 |
+
content_to_new_content = {'DW_40663341': [('starting with Sunday\'s', 'starting Sunday\'s'),
|
173 |
+
('$1 million (€840,000)', 'one million dollars (840,000 euros)'),
|
174 |
+
('who kneel in protest during', 'to kneel in protest during')]}
|
175 |
+
|
176 |
+
articles_done = 0
|
177 |
+
total_articles = len(article_id_to_url_json)
|
178 |
+
problematic_articles = set()
|
179 |
+
problematic_hash_articles = set()
|
180 |
+
all_annos = []
|
181 |
+
for curr_article in article_id_to_url_json:
|
182 |
+
article_id = curr_article['id']
|
183 |
+
article_url = curr_article['url']
|
184 |
+
article_id_nr = int(article_id[3:])
|
185 |
+
if article_id_nr in ids_to_new_ids:
|
186 |
+
article_url = article_url.replace(str(article_id_nr), str(ids_to_new_ids[article_id_nr]))
|
187 |
+
article_hash = curr_article['hash']
|
188 |
+
#print('fetching {} out of {} articles -'.format(articles_done, total_articles), curr_article)
|
189 |
+
|
190 |
+
annos_only_art_path = downloaded['Task_1']['url'] + '/DWIE-master/data/annos/' + curr_article['id'] + '.json'
|
191 |
+
annos_only_json = json.load(open(annos_only_art_path))
|
192 |
+
done = False
|
193 |
+
attempts = 0
|
194 |
+
while not done and attempts <= 3:
|
195 |
+
# try:
|
196 |
+
a = requests.get(article_url, allow_redirects=True).json()
|
197 |
+
if 'name' in a:
|
198 |
+
article_title = a['name']
|
199 |
+
else:
|
200 |
+
print('WARNING: no name detected for ', article_id)
|
201 |
+
article_title = ''
|
202 |
+
if 'teaser' in a:
|
203 |
+
article_teaser = a['teaser']
|
204 |
+
else:
|
205 |
+
print('WARNING: no teaser detected for ', article_id)
|
206 |
+
article_teaser = ''
|
207 |
+
|
208 |
+
if 'text' in a:
|
209 |
+
article_text = a['text']
|
210 |
+
else:
|
211 |
+
print('WARNING: no text detected for ', article_id)
|
212 |
+
article_text = ''
|
213 |
+
|
214 |
+
article_content_no_strip = '{}\n{}\n{}'.format(article_title, article_teaser, article_text)
|
215 |
+
article_content = article_content_no_strip
|
216 |
+
|
217 |
+
if article_id in content_to_new_content:
|
218 |
+
for str_dw, str_dwie in content_to_new_content[article_id]:
|
219 |
+
article_content = article_content.replace(str_dw, str_dwie)
|
220 |
+
|
221 |
+
if 'mentions' in annos_only_json:
|
222 |
+
for idx_mention, curr_mention in enumerate(annos_only_json['mentions']):
|
223 |
+
curr_mention_text = curr_mention['text'].replace(' ', ' ')
|
224 |
+
curr_mention_text = curr_mention_text.replace('', '')
|
225 |
+
solved = False
|
226 |
+
if "begin" not in curr_mention:
|
227 |
+
curr_mention["begin"] = 0
|
228 |
+
if "end" not in curr_mention:
|
229 |
+
curr_mention["end"] = 0
|
230 |
+
if "text" not in curr_mention:
|
231 |
+
curr_mention["text"] = ""
|
232 |
+
if "concept" not in curr_mention:
|
233 |
+
curr_mention["concept"] = 0
|
234 |
+
|
235 |
+
|
236 |
+
if "candidates" not in curr_mention:
|
237 |
+
curr_mention["candidates"] = []
|
238 |
+
if "scores" not in curr_mention:
|
239 |
+
curr_mention["scores"] = []
|
240 |
+
|
241 |
+
if article_content[curr_mention['begin']:curr_mention['end']] != curr_mention_text:
|
242 |
+
curr_mention_begin = curr_mention['begin']
|
243 |
+
curr_mention_end = curr_mention['end']
|
244 |
+
offset = 0
|
245 |
+
|
246 |
+
if not solved:
|
247 |
+
print('--------------------------------')
|
248 |
+
print('ERROR ALIGNMENT: texts don\'t match for {}: "{}" vs "{}", the textual content of '
|
249 |
+
'the files won\'t be complete '
|
250 |
+
.format(article_id, article_content[curr_mention['begin']:curr_mention['end']],
|
251 |
+
curr_mention_text))
|
252 |
+
print('--------------------------------')
|
253 |
+
problematic_articles.add(article_id)
|
254 |
+
else:
|
255 |
+
if "candidates" not in curr_mention:
|
256 |
+
curr_mention["candidates"] = []
|
257 |
+
|
258 |
+
curr_mention['begin'] = curr_mention_begin - offset
|
259 |
+
curr_mention['end'] = curr_mention_end - offset
|
260 |
+
if 'concepts' in annos_only_json:
|
261 |
+
for idx_concept, curr_concept in enumerate(annos_only_json['concepts']):
|
262 |
+
if "concept" not in curr_concept:
|
263 |
+
curr_concept["concept"] = 0
|
264 |
+
if "text" not in curr_concept:
|
265 |
+
curr_concept["text"] = ""
|
266 |
+
if "count" not in curr_concept:
|
267 |
+
curr_concept["count"] = 0
|
268 |
+
if "link" not in curr_concept:
|
269 |
+
curr_concept["link"] = ""
|
270 |
+
if "tags" not in curr_concept:
|
271 |
+
curr_concept["tags"] = []
|
272 |
+
|
273 |
+
if not should_tokenize:
|
274 |
+
annos_json = {'id': annos_only_json['id'],
|
275 |
+
'content': article_content,
|
276 |
+
'tags': annos_only_json['tags'],
|
277 |
+
'mentions': annos_only_json['mentions'],
|
278 |
+
'concepts': annos_only_json['concepts'],
|
279 |
+
'relations': annos_only_json['relations'],
|
280 |
+
'frames': annos_only_json['frames'],
|
281 |
+
'iptc': annos_only_json['iptc']}
|
282 |
+
all_annos.append(annos_json)
|
283 |
+
|
284 |
+
#print("annos_json",annos_json)
|
285 |
+
else:
|
286 |
+
tokenized = tokenizer.tokenize(article_content)
|
287 |
+
tokens = list()
|
288 |
+
begin = list()
|
289 |
+
end = list()
|
290 |
+
for curr_token in tokenized:
|
291 |
+
tokens.append(curr_token['token'])
|
292 |
+
begin.append(curr_token['offset'])
|
293 |
+
end.append(curr_token['offset'] + curr_token['length'])
|
294 |
+
annos_json = OrderedDict({'id': annos_only_json['id'],
|
295 |
+
'content': article_content,
|
296 |
+
'tokenization': OrderedDict({'tokens': tokens, 'begin': begin, 'end': end}),
|
297 |
+
'tags': annos_only_json['tags'],
|
298 |
+
'mentions': annos_only_json['mentions'],
|
299 |
+
'concepts': annos_only_json['concepts'],
|
300 |
+
'relations': annos_only_json['relations'],
|
301 |
+
'frames': annos_only_json['frames'],
|
302 |
+
'iptc': annos_only_json['iptc']})
|
303 |
+
|
304 |
+
hash_content = hashlib.sha1(article_content.encode("UTF-8")).hexdigest()
|
305 |
+
|
306 |
+
if hash_content != article_hash:
|
307 |
+
print('!!ERROR - hash doesn\'t match for ', article_id)
|
308 |
+
problematic_hash_articles.add(article_id)
|
309 |
+
attempts += 1
|
310 |
+
|
311 |
+
sleep(.1)
|
312 |
+
done = True
|
313 |
+
if done:
|
314 |
+
articles_done += 1
|
315 |
+
|
316 |
+
|
317 |
+
return[
|
318 |
+
datasets.SplitGenerator(
|
319 |
+
name=datasets.Split.TRAIN,
|
320 |
+
# These kwargs will be passed to _generate_examples
|
321 |
+
gen_kwargs={
|
322 |
+
"all_annos" : all_annos,
|
323 |
+
|
324 |
+
}
|
325 |
+
|
326 |
+
)
|
327 |
+
]
|
328 |
+
|
329 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
330 |
+
def _generate_examples(self, all_annos):
|
331 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
332 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
333 |
+
for data in all_annos:
|
334 |
+
yield data['id'], {
|
335 |
+
"id": data['id'],
|
336 |
+
"content":data['content'],
|
337 |
+
"tags": data['tags'],
|
338 |
+
"mentions": data['mentions'],
|
339 |
+
"concepts": data['concepts'],
|
340 |
+
"relations": data['relations'],
|
341 |
+
"frames": data['frames'],
|
342 |
+
"iptc": data['iptc']
|
343 |
+
}
|
344 |
+
|
345 |
+
|
346 |
+
|