mwirth7 commited on
Commit
86f0ca0
·
verified ·
1 Parent(s): b0c14a0

Update BirdSet.py

Browse files
Files changed (1) hide show
  1. BirdSet.py +131 -130
BirdSet.py CHANGED
@@ -11,25 +11,27 @@
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
- # TODO: Address all TODOs and remove all explanatory comments
15
  """BirdSet: The General Avian Monitoring Evaluation Benchmark"""
16
 
17
  import os
18
  import datasets
19
  import pandas as pd
 
 
 
 
20
 
21
  from .classes import BIRD_NAMES_NIPS4BPLUS, BIRD_NAMES_AMAZON_BASIN, BIRD_NAMES_HAWAII, \
22
  BIRD_NAMES_HIGH_SIERRAS, BIRD_NAMES_SIERRA_NEVADA, BIRD_NAMES_POWDERMILL_NATURE, BIRD_NAMES_SAPSUCKER, \
23
  BIRD_NAMES_COLUMBIA_COSTA_RICA, BIRD_NAMES_XENOCANTO, BIRD_NAMES_XENOCANTO_M
24
 
25
- from . import classes
26
-
27
- from .descriptions import _BIRD_DB_CITATION, _NIPS4BPLUS_CITATION, _NIPS4BPLUS_DESCRIPTION, \
28
  _HIGH_SIERRAS_DESCRIPTION, _HIGH_SIERRAS_CITATION, _SIERRA_NEVADA_DESCRIPTION, _SIERRA_NEVADA_CITATION, \
29
  _POWDERMILL_NATURE_DESCRIPTION, _POWDERMILL_NATURE_CITATION, _AMAZON_BASIN_DESCRIPTION, _AMAZON_BASIN_CITATION, \
30
  _SAPSUCKER_WOODS_DESCRIPTION, _SAPSUCKER_WOODS_CITATION, _COLUMBIA_COSTA_RICA_CITATION, \
31
  _COLUMBIA_COSTA_RICA_DESCRIPTION, _HAWAIIAN_ISLANDS_CITATION, _HAWAIIAN_ISLANDS_DESCRIPTION
32
 
 
33
  #############################################
34
  _BIRDSET_CITATION = """\
35
  @article{birdset,
@@ -48,6 +50,45 @@ _BIRDSET_DESCRIPTION = """\
48
 
49
  base_url = "https://huggingface.co/datasets/DBD-research-group/BirdSet/resolve/data"
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  class BirdSetConfig(datasets.BuilderConfig):
52
  def __init__(
53
  self,
@@ -58,7 +99,7 @@ class BirdSetConfig(datasets.BuilderConfig):
58
  species_group_list,
59
  order_list,
60
  **kwargs):
61
- super().__init__(version=datasets.Version("0.0.2"), name=name, **kwargs)
62
 
63
  features = datasets.Features({
64
  "audio": datasets.Audio(sampling_rate=32_000, mono=True, decode=False),
@@ -373,6 +414,7 @@ class BirdSet(datasets.GeneratorBasedBuilder):
373
 
374
  def _split_generators(self, dl_manager):
375
  ds_name = self.config.name
 
376
  train_files = {"PER": 11,
377
  "NES": 13,
378
  "UHH": 5,
@@ -393,7 +435,7 @@ class BirdSet(datasets.GeneratorBasedBuilder):
393
  "SSW": 36,
394
  "SNE": 5}
395
 
396
- test5s_files = {"PER": 1,
397
  "NES": 1,
398
  "UHH": 1,
399
  "HSN": 1,
@@ -402,157 +444,116 @@ class BirdSet(datasets.GeneratorBasedBuilder):
402
  "SSW": 4,
403
  "SNE": 1}
404
 
 
405
  if self.config.name.endswith("_xc"):
406
  ds_name = ds_name[:-3]
407
  dl_dir = dl_manager.download({
408
  "train": [os.path.join(self.config.data_dir, f"{ds_name}_train_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
409
- "metadata": os.path.join(self.config.data_dir, f"{ds_name}_metadata_train.parquet"),
410
  })
411
 
412
  elif self.config.name.endswith("_scape"):
413
  ds_name = ds_name[:-6]
414
  dl_dir = dl_manager.download({
415
  "test": [os.path.join(self.config.data_dir, f"{ds_name}_test_shard_{n:04d}.tar.gz") for n in range(1, test_files[ds_name] + 1)],
416
- "test_5s": [os.path.join(self.config.data_dir, f"{ds_name}_test5s_shard_{n:04d}.tar.gz") for n in range(1, test5s_files[ds_name] + 1)],
417
- "metadata": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test.parquet"),
418
- "metadata_5s": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test_5s.parquet"),
419
  })
420
 
421
  # use POW for XCM/XCL validation
422
  elif self.config.name.startswith("XC"):
423
  dl_dir = dl_manager.download({
424
  "train": [os.path.join(self.config.data_dir, f"{ds_name}_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
425
- "valid": [os.path.join(self.config.data_dir[:-3] + "POW", f"POW_test5s_shard_{n:04d}.tar.gz") for n in range(1, test5s_files["POW"] + 1)],
426
- "metadata": os.path.join(self.config.data_dir, f"{ds_name}_metadata.parquet"),
427
- "meta_test_5s": os.path.join(self.config.data_dir[:-3] + "POW", f"POW_metadata_test_5s.parquet"),
428
  })
429
 
430
- elif self.config.name in train_files.keys():
431
  dl_dir = dl_manager.download({
432
  "train": [os.path.join(self.config.data_dir, f"{ds_name}_train_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
433
  "test": [os.path.join(self.config.data_dir, f"{ds_name}_test_shard_{n:04d}.tar.gz") for n in range(1, test_files[ds_name] + 1)],
434
- "test_5s": [os.path.join(self.config.data_dir, f"{ds_name}_test5s_shard_{n:04d}.tar.gz") for n in range(1, test5s_files[ds_name] + 1)],
435
  "meta_train": os.path.join(self.config.data_dir, f"{ds_name}_metadata_train.parquet"),
436
  "meta_test": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test.parquet"),
437
  "meta_test_5s": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test_5s.parquet"),
438
  })
439
 
440
- local_audio_archives_paths = dl_manager.extract(dl_dir) if not dl_manager.is_streaming else None
441
-
442
- if self.config.name.startswith("XC") or self.config.name.endswith("_xc"):
443
- return [
444
- datasets.SplitGenerator(
445
- name=datasets.Split.TRAIN,
446
- gen_kwargs={
447
- "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["train"]],
448
- "local_audio_archives_paths": local_audio_archives_paths["train"] if local_audio_archives_paths else None,
449
- "metapath": dl_dir["metadata"],
450
- "split": datasets.Split.TRAIN,
451
- },
452
- ),
453
- datasets.SplitGenerator(
454
- name="valid",
455
- gen_kwargs={
456
- "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["valid"]],
457
- "local_audio_archives_paths": local_audio_archives_paths["valid"] if local_audio_archives_paths else None,
458
- "metapath": dl_dir["meta_test_5s"],
459
- "split": "valid",
460
- },
461
- ),
462
- ]
463
 
464
- elif self.config.name.endswith("_scape"):
465
- return [
466
- datasets.SplitGenerator(
467
- name=datasets.Split.TEST,
468
- gen_kwargs={
469
- "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test"]],
470
- "local_audio_archives_paths": local_audio_archives_paths["test"] if local_audio_archives_paths else None,
471
- "metapath": dl_dir["metadata"],
472
- "split": datasets.Split.TEST,
473
- },
474
- ),
475
- datasets.SplitGenerator(
476
- name="test_5s",
477
- gen_kwargs={
478
- "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test_5s"]],
479
- "local_audio_archives_paths": local_audio_archives_paths["test_5s"] if local_audio_archives_paths else None,
480
- "metapath": dl_dir["metadata_5s"],
481
- "split": "test_multilabel"
482
- },
483
- ),
484
- ]
485
-
486
- return [
487
- datasets.SplitGenerator(
488
- name=datasets.Split.TRAIN,
489
- gen_kwargs={
490
- "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["train"]],
491
- "local_audio_archives_paths": local_audio_archives_paths["train"] if local_audio_archives_paths else None,
492
- "metapath": dl_dir["meta_train"],
493
- "split": datasets.Split.TRAIN,
494
- },
495
- ),
496
- datasets.SplitGenerator(
497
- name=datasets.Split.TEST,
498
- gen_kwargs={
499
- "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test"]],
500
- "local_audio_archives_paths": local_audio_archives_paths["test"] if local_audio_archives_paths else None,
501
- "metapath": dl_dir["meta_test"],
502
- "split": datasets.Split.TEST,
503
- },
504
- ),
505
- datasets.SplitGenerator(
506
- name="test_5s",
507
- gen_kwargs={
508
- "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test_5s"]],
509
- "local_audio_archives_paths": local_audio_archives_paths["test_5s"] if local_audio_archives_paths else None,
510
- "metapath": dl_dir["meta_test_5s"],
511
- "split": "test_multilabel"
512
- },
513
- ),
514
- ]
515
-
516
- def _generate_examples(self, audio_archive_iterators, local_audio_archives_paths, metapath, split):
517
- metadata = pd.read_parquet(metapath)
518
  idx = 0
519
- for i, audio_archive_iterator in enumerate(audio_archive_iterators):
 
520
  for audio_path_in_archive, audio_file in audio_archive_iterator:
521
- id = os.path.split(audio_path_in_archive)[-1]
522
- rows = metadata[metadata.index == (int(id[2:].split(".")[0]) if split == "train" else id)]
523
- audio_path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths else audio_path_in_archive
524
-
525
- audio = audio_path if local_audio_archives_paths else audio_file.read()
526
  for _, row in rows.iterrows():
527
- idx += 1
528
- yield id if split == "train" else idx, {
529
- "audio": audio,
530
- "filepath": audio_path,
531
- "start_time": row["start_time"],
532
- "end_time": row["end_time"],
533
- "low_freq": row["low_freq"],
534
- "high_freq": row["high_freq"],
535
- "ebird_code": row["ebird_code"] if split != "test_multilabel" else None,
536
- "ebird_code_multilabel": row.get("ebird_code_multilabel", None) if "no_call" not in row.get("ebird_code_multilabel", []) else [],
537
- "ebird_code_secondary": row.get("ebird_code_secondary", None),
538
- "call_type": row["call_type"],
539
- "sex": row["sex"],
540
- "lat": row["lat"],
541
- "long": row["long"],
542
- "length": row.get("length", None),
543
- "microphone": row["microphone"],
544
- "license": row.get("license", None),
545
- "source": row["source"],
546
- "local_time": row["local_time"],
547
- "detected_events": row.get("detected_events", None),
548
- "event_cluster": row.get("event_cluster", None),
549
- "peaks": row.get("peaks", None),
550
- "quality": row.get("quality", None),
551
- "recordist": row.get("recordist", None),
552
- "genus": row.get("genus", None),
553
- "species_group": row.get("species_group", None),
554
- "order": row.get("order", None),
555
- "genus_multilabel": row.get("genus_multilabel", None),
556
- "species_group_multilabel": row.get("species_group_multilabel", None),
557
- "order_multilabel": row.get("order_multilabel", None),
558
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
 
14
  """BirdSet: The General Avian Monitoring Evaluation Benchmark"""
15
 
16
  import os
17
  import datasets
18
  import pandas as pd
19
+ from tqdm.auto import tqdm
20
+ import tarfile
21
+
22
+ from . import classes
23
 
24
  from .classes import BIRD_NAMES_NIPS4BPLUS, BIRD_NAMES_AMAZON_BASIN, BIRD_NAMES_HAWAII, \
25
  BIRD_NAMES_HIGH_SIERRAS, BIRD_NAMES_SIERRA_NEVADA, BIRD_NAMES_POWDERMILL_NATURE, BIRD_NAMES_SAPSUCKER, \
26
  BIRD_NAMES_COLUMBIA_COSTA_RICA, BIRD_NAMES_XENOCANTO, BIRD_NAMES_XENOCANTO_M
27
 
28
+ from .descriptions import _NIPS4BPLUS_CITATION, _NIPS4BPLUS_DESCRIPTION, \
 
 
29
  _HIGH_SIERRAS_DESCRIPTION, _HIGH_SIERRAS_CITATION, _SIERRA_NEVADA_DESCRIPTION, _SIERRA_NEVADA_CITATION, \
30
  _POWDERMILL_NATURE_DESCRIPTION, _POWDERMILL_NATURE_CITATION, _AMAZON_BASIN_DESCRIPTION, _AMAZON_BASIN_CITATION, \
31
  _SAPSUCKER_WOODS_DESCRIPTION, _SAPSUCKER_WOODS_CITATION, _COLUMBIA_COSTA_RICA_CITATION, \
32
  _COLUMBIA_COSTA_RICA_DESCRIPTION, _HAWAIIAN_ISLANDS_CITATION, _HAWAIIAN_ISLANDS_DESCRIPTION
33
 
34
+
35
  #############################################
36
  _BIRDSET_CITATION = """\
37
  @article{birdset,
 
50
 
51
  base_url = "https://huggingface.co/datasets/DBD-research-group/BirdSet/resolve/data"
52
 
53
+
54
+ def _extract_all_to_same_folder(tar_path, output_dir):
55
+ """custom extraction for tar.gz files, that extracts all files to output_dir without subfolders"""
56
+ # check if data already exists
57
+ if not os.path.isfile(output_dir) and os.path.isdir(output_dir) and os.listdir(output_dir):
58
+ return output_dir
59
+ os.makedirs(output_dir, exist_ok=True)
60
+
61
+ with tarfile.open(tar_path, "r:gz") as tar:
62
+ for member in tar.getmembers():
63
+ if member.isfile():
64
+ member.name = os.path.basename(member.name)
65
+ tar.extract(member, path=output_dir)
66
+
67
+ return output_dir
68
+
69
+
70
+ def _extract_and_delete(dl_dir: dict) -> dict:
71
+ """extracts downloaded files and deletes the archive file immediately, with progress bar.
72
+ only the processed archive and its content are saved at the same time."""
73
+ audio_paths = {name: [] for name, data in dl_dir.items() if isinstance(data, list)}
74
+ for name, data in dl_dir.items():
75
+ if not isinstance(data, list):
76
+ continue
77
+
78
+ # extract and immediately delete archives
79
+ for path in tqdm(data, f"Extracting {name} split"):
80
+ head, tail = os.path.split(path)
81
+ output_dir = os.path.join(head, "extracted", tail)
82
+ #audio_path = dl_manager.extract(path) # if all archive files are without subfolders this works just fine
83
+ audio_path = _extract_all_to_same_folder(path, output_dir)
84
+ os.remove(path)
85
+ os.remove(f"{path}.lock")
86
+ os.remove(f"{path}.json")
87
+ audio_paths[name].append(audio_path)
88
+
89
+ return audio_paths
90
+
91
+
92
  class BirdSetConfig(datasets.BuilderConfig):
93
  def __init__(
94
  self,
 
99
  species_group_list,
100
  order_list,
101
  **kwargs):
102
+ super().__init__(version=datasets.Version("0.0.4"), name=name, **kwargs)
103
 
104
  features = datasets.Features({
105
  "audio": datasets.Audio(sampling_rate=32_000, mono=True, decode=False),
 
414
 
415
  def _split_generators(self, dl_manager):
416
  ds_name = self.config.name
417
+ # settings for how much archives (tar.gz) files are uploaded for a specific dataset
418
  train_files = {"PER": 11,
419
  "NES": 13,
420
  "UHH": 5,
 
435
  "SSW": 36,
436
  "SNE": 5}
437
 
438
+ test_5s_files = {"PER": 1,
439
  "NES": 1,
440
  "UHH": 1,
441
  "HSN": 1,
 
444
  "SSW": 4,
445
  "SNE": 1}
446
 
447
+ # different configs, determine what needs to be downloaded
448
  if self.config.name.endswith("_xc"):
449
  ds_name = ds_name[:-3]
450
  dl_dir = dl_manager.download({
451
  "train": [os.path.join(self.config.data_dir, f"{ds_name}_train_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
452
+ "meta_train": os.path.join(self.config.data_dir, f"{ds_name}_metadata_train.parquet"),
453
  })
454
 
455
  elif self.config.name.endswith("_scape"):
456
  ds_name = ds_name[:-6]
457
  dl_dir = dl_manager.download({
458
  "test": [os.path.join(self.config.data_dir, f"{ds_name}_test_shard_{n:04d}.tar.gz") for n in range(1, test_files[ds_name] + 1)],
459
+ "test_5s": [os.path.join(self.config.data_dir, f"{ds_name}_test5s_shard_{n:04d}.tar.gz") for n in range(1, test_5s_files[ds_name] + 1)],
460
+ "meta_test": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test.parquet"),
461
+ "meta_test_5s": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test_5s.parquet"),
462
  })
463
 
464
  # use POW for XCM/XCL validation
465
  elif self.config.name.startswith("XC"):
466
  dl_dir = dl_manager.download({
467
  "train": [os.path.join(self.config.data_dir, f"{ds_name}_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
468
+ "valid": [os.path.join(self.config.data_dir[:-3] + "POW", f"POW_test5s_shard_{n:04d}.tar.gz") for n in range(1, test_5s_files["POW"] + 1)],
469
+ "meta_train": os.path.join(self.config.data_dir, f"{ds_name}_metadata.parquet"),
470
+ "meta_valid": os.path.join(self.config.data_dir[:-3] + "POW", f"POW_metadata_test_5s.parquet"),
471
  })
472
 
473
+ else:
474
  dl_dir = dl_manager.download({
475
  "train": [os.path.join(self.config.data_dir, f"{ds_name}_train_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
476
  "test": [os.path.join(self.config.data_dir, f"{ds_name}_test_shard_{n:04d}.tar.gz") for n in range(1, test_files[ds_name] + 1)],
477
+ "test_5s": [os.path.join(self.config.data_dir, f"{ds_name}_test5s_shard_{n:04d}.tar.gz") for n in range(1, test_5s_files[ds_name] + 1)],
478
  "meta_train": os.path.join(self.config.data_dir, f"{ds_name}_metadata_train.parquet"),
479
  "meta_test": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test.parquet"),
480
  "meta_test_5s": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test_5s.parquet"),
481
  })
482
 
483
+ # custom extraction that deletes archives right after extraction
484
+ audio_paths = _extract_and_delete(dl_dir) if not dl_manager.is_streaming else None
485
+
486
+ # construct split generators
487
+ # assumes every key in dl_dir of NAME also has meta_NAME
488
+ names = [name for name in dl_dir.keys() if not name.startswith("meta_")]
489
+ is_streaming = dl_manager.is_streaming
490
+
491
+ return [datasets.SplitGenerator(
492
+ name=name,
493
+ gen_kwargs={
494
+ "audio_archive_iterators": (dl_manager.iter_archive(archive_path) for archive_path in dl_dir[name]) if is_streaming else () ,
495
+ "audio_extracted_paths": audio_paths[name] if not is_streaming else (),
496
+ "meta_path": dl_dir[f"meta_{name}"],
497
+ "split": name
498
+ }
499
+ ) for name in names]
500
+
501
+
502
+ def _generate_examples(self, audio_archive_iterators, audio_extracted_paths, meta_path, split):
503
+ metadata = pd.read_parquet(meta_path)
504
+ if metadata.index.name != "filepath":
505
+ metadata.index = metadata["filepath"].str.split("/").apply(lambda x: x[-1])
506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507
  idx = 0
508
+ # in case of streaming
509
+ for audio_archive_iterator in audio_archive_iterators:
510
  for audio_path_in_archive, audio_file in audio_archive_iterator:
511
+ file_name = os.path.split(audio_path_in_archive)[-1]
512
+ rows = metadata.loc[[file_name]]
513
+ audio = audio_file.read()
 
 
514
  for _, row in rows.iterrows():
515
+ yield idx, self._metadata_from_row(row, split, audio_path=file_name, audio=audio)
516
+ idx += 1
517
+
518
+ # in case of not streaming
519
+ for audio_extracted_path in audio_extracted_paths:
520
+ audio_files = os.listdir(audio_extracted_path)
521
+ current_metadata = metadata.loc[audio_files]
522
+ for audio_file, row in current_metadata.iterrows():
523
+ audio_path = os.path.join(audio_extracted_path, audio_file)
524
+ yield idx, self._metadata_from_row(row, split, audio_path=audio_path)
525
+ idx += 1
526
+
527
+
528
+ @staticmethod
529
+ def _metadata_from_row(row, split: str, audio_path=None, audio=None) -> dict:
530
+ return {"audio": audio_path if not audio else {"path": None, "bytes": audio},
531
+ "filepath": audio_path,
532
+ "start_time": row["start_time"],
533
+ "end_time": row["end_time"],
534
+ "low_freq": row["low_freq"],
535
+ "high_freq": row["high_freq"],
536
+ "ebird_code": row["ebird_code"] if split != "test_5s" else None,
537
+ "ebird_code_multilabel": row.get("ebird_code_multilabel", None),
538
+ "ebird_code_secondary": row.get("ebird_code_secondary", None),
539
+ "call_type": row["call_type"],
540
+ "sex": row["sex"],
541
+ "lat": row["lat"],
542
+ "long": row["long"],
543
+ "length": row.get("length", None),
544
+ "microphone": row["microphone"],
545
+ "license": row.get("license", None),
546
+ "source": row["source"],
547
+ "local_time": row["local_time"],
548
+ "detected_events": row.get("detected_events", None),
549
+ "event_cluster": row.get("event_cluster", None),
550
+ "peaks": row.get("peaks", None),
551
+ "quality": row.get("quality", None),
552
+ "recordist": row.get("recordist", None),
553
+ "genus": row.get("genus", None) if split != "test_5s" else None,
554
+ "species_group": row.get("species_group", None) if split != "test_5s" else None,
555
+ "order": row.get("order", None) if split != "test_5s" else None,
556
+ "genus_multilabel": row.get("genus_multilabel", [row.get("genus")]),
557
+ "species_group_multilabel": row.get("species_group_multilabel", [row.get("species_group")]),
558
+ "order_multilabel": row.get("order_multilabel", [row.get("order")]),
559
+ }