|
|
import os |
|
|
import tqdm |
|
|
import csv |
|
|
import re |
|
|
import glob |
|
|
import json |
|
|
import random |
|
|
import numpy as np |
|
|
import imageio |
|
|
import argparse |
|
|
import io |
|
|
|
|
|
seed = 0 |
|
|
|
|
|
random.seed(seed) |
|
|
np.random.seed(seed) |
|
|
|
|
|
QA_template = """ |
|
|
Select the best answer to the following multiple-choice question based on the video. Respond with only the letter (A, B, C, or D) of the correct option. |
|
|
|
|
|
Considering the progress shown in the video and my current observation in the last frame, what action should I take next in order to {}? |
|
|
|
|
|
A. {} |
|
|
B. {} |
|
|
C. {} |
|
|
D. {} |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
import tempfile |
|
|
from tqdm import tqdm |
|
|
|
|
|
def extract_characters_regex(s): |
|
|
|
|
|
s = s.strip() |
|
|
answer_prefixes = [ |
|
|
"The best answer is", |
|
|
"The correct answer is", |
|
|
"The answer is", |
|
|
"The answer", |
|
|
"The best option is" |
|
|
"The correct option is", |
|
|
"Best answer:" |
|
|
"Best option:", |
|
|
"Answer:", |
|
|
"Option:", |
|
|
"The correct answer", |
|
|
"The correct option", |
|
|
] |
|
|
for answer_prefix in answer_prefixes: |
|
|
s = s.replace(answer_prefix, "") |
|
|
|
|
|
if len(s.split()) > 10 and not re.search("[ABCD]", s): |
|
|
return "" |
|
|
matches = re.search(r'[ABCD]', s) |
|
|
if matches is None: |
|
|
return "" |
|
|
return matches[0] |
|
|
|
|
|
def cut_keyframes(video_dir, video_id, start_frame_id, end_frame_id, frame_number, keyframes_dir): |
|
|
frame_idx = np.linspace(start_frame_id, end_frame_id, frame_number, endpoint=True, dtype=int) |
|
|
print(f"start frame id: {start_frame_id}, end frame id: {end_frame_id}, sampled frames: {frame_idx}") |
|
|
|
|
|
|
|
|
|
|
|
video_path = os.path.join(video_dir, video_id.split('_')[0], video_id +'.MP4') |
|
|
|
|
|
if os.path.exists(video_path): |
|
|
clip = imageio.get_reader(video_path) |
|
|
if not os.path.exists(os.path.join(keyframes_dir, video_id, f"{end_frame_id}")): |
|
|
os.makedirs(os.path.join(keyframes_dir, video_id, f"{end_frame_id}")) |
|
|
for idx, frame_id in enumerate(frame_idx): |
|
|
frame = clip.get_data(frame_id) |
|
|
imageio.imwrite(os.path.join(keyframes_dir, video_id, f"{end_frame_id}", f'frame-{idx}_frameID-{frame_id}.png'), frame) |
|
|
|
|
|
|
|
|
|
|
|
def cut_video_clip(video_dir, qa_id, start_frame_id, end_frame_id, clip_dir): |
|
|
if not os.path.exists(clip_dir): |
|
|
os.makedirs(clip_dir) |
|
|
|
|
|
clip = imageio.get_reader(os.path.join(video_dir, qa_id.split('_')[0]+'.mp4')) |
|
|
fps = clip.get_meta_data()['fps'] |
|
|
|
|
|
writer = imageio.get_writer(os.path.join(clip_dir, qa_id+'.mp4'), fps=fps) |
|
|
for i in range(start_frame_id, end_frame_id + 1): |
|
|
frame = clip.get_data(i) |
|
|
writer.append_data(frame) |
|
|
writer.close() |
|
|
|
|
|
import concurrent.futures |
|
|
|
|
|
def run_inference(model, input_type, qa_anno, video_dir, output_dir, clip_dir, keyframes_dir, frame_number): |
|
|
count, correct = 0, 0 |
|
|
output_f = open(os.path.join(output_dir), "a") |
|
|
|
|
|
def extract_frames(qa_item): |
|
|
video_id = qa_item['video_id'] |
|
|
qa_id = qa_item['sample_id'] |
|
|
end_frame_id = qa_item['current_observation_frame'] |
|
|
if len(qa_item['task_progress_metadata']) > 0: |
|
|
start_frame_id = qa_item['task_progress_metadata'][0]['start_frame'] |
|
|
else: |
|
|
start_frame_id = max(end_frame_id - 500, 0) |
|
|
|
|
|
|
|
|
if input_type == 'video': |
|
|
visual_input = os.path.join(clip_dir, qa_id+'.mp4') |
|
|
if not os.path.exists(visual_input): |
|
|
cut_video_clip(video_dir, qa_id, start_frame_id, end_frame_id, clip_dir) |
|
|
elif input_type == 'image': |
|
|
if not os.path.exists(os.path.join(keyframes_dir, video_id, f"{end_frame_id}")): |
|
|
cut_keyframes(video_dir, video_id, start_frame_id, end_frame_id, frame_number, keyframes_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: |
|
|
futures = {executor.submit(extract_frames, qa_item): qa_item for qa_item in qa_anno} |
|
|
for future in concurrent.futures.as_completed(futures): |
|
|
file = futures[future] |
|
|
try: |
|
|
future.result() |
|
|
except Exception as exc: |
|
|
print(f"{file} generated an exception: {exc}") |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
model, input_type = None, "image" |
|
|
qa_anno = json.load(open("EgoPlan_validation.json")) |
|
|
video_dir = "/mnt/petrelfs/share_data/haohaoran/Epic_Kitchen_100/extracted_video_files/3h91syskeag572hl6tvuovwv4d/videos/test" |
|
|
output_dir = "output" |
|
|
clip_dir = 'clip_dir' |
|
|
keyframes_dir = 'frames' |
|
|
frame_number = 16 |
|
|
|
|
|
run_inference(model, input_type, qa_anno, video_dir, output_dir, clip_dir, keyframes_dir, frame_number) |