|
import json |
|
import os |
|
import random |
|
from fuzzywuzzy import fuzz |
|
from itertools import chain |
|
from zipfile import ZipFile |
|
from copy import deepcopy |
|
from convlab.util.unified_datasets_util import BaseDatabase |
|
|
|
|
|
class Database(BaseDatabase): |
|
def __init__(self): |
|
"""extract data.zip and load the database.""" |
|
archive = ZipFile(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data.zip')) |
|
self.domains = ['restaurant', 'hotel', 'attraction', 'train', 'hospital', 'police'] |
|
self.dbs = {} |
|
for domain in self.domains: |
|
with archive.open('data/{}_db.json'.format(domain)) as f: |
|
self.dbs[domain] = json.loads(f.read()) |
|
|
|
self.dbs['taxi'] = { |
|
"taxi_colors": ["black","white","red","yellow","blue","grey"], |
|
"taxi_types": ["toyota","skoda","bmw","honda","ford","audi","lexus","volvo","volkswagen","tesla"], |
|
"taxi_phone": ["^[0-9]{10}$"] |
|
} |
|
self.dbs['police'][0]['postcode'] = "cb11jg" |
|
for entity in self.dbs['hospital']: |
|
entity['postcode'] = "cb20qq" |
|
entity['address'] = "Hills Rd, Cambridge" |
|
|
|
self.slot2dbattr = { |
|
'open hours': 'openhours', |
|
'price range': 'pricerange', |
|
'arrive by': 'arriveBy', |
|
'leave at': 'leaveAt', |
|
'train id': 'trainID' |
|
} |
|
|
|
def query(self, domain: str, state: dict, topk: int, ignore_open=False, soft_contraints=(), fuzzy_match_ratio=60) -> list: |
|
"""return a list of topk entities (dict containing slot-value pairs) for a given domain based on the dialogue state.""" |
|
|
|
if domain == 'taxi': |
|
return [{'taxi_colors': random.choice(self.dbs[domain]['taxi_colors']), |
|
'taxi_types': random.choice(self.dbs[domain]['taxi_types']), |
|
'taxi_phone': ''.join([str(random.randint(1, 9)) for _ in range(11)])}] |
|
if domain == 'police': |
|
return deepcopy(self.dbs['police']) |
|
if domain == 'hospital': |
|
department = None |
|
for key, val in state: |
|
if key == 'department': |
|
department = val |
|
if not department: |
|
return deepcopy(self.dbs['hospital']) |
|
else: |
|
return [deepcopy(x) for x in self.dbs['hospital'] if x['department'].lower() == department.strip().lower()] |
|
state = list(map(lambda ele: (self.slot2dbattr.get(ele[0], ele[0]), ele[1]) if not(ele[0] == 'area' and ele[1] == 'center') else ('area', 'centre'), state)) |
|
|
|
found = [] |
|
for i, record in enumerate(self.dbs[domain]): |
|
constraints_iterator = zip(state, [False] * len(state)) |
|
soft_contraints_iterator = zip(soft_contraints, [True] * len(soft_contraints)) |
|
for (key, val), fuzzy_match in chain(constraints_iterator, soft_contraints_iterator): |
|
if val in ["", "dont care", 'not mentioned', "don't care", "dontcare", "do n't care"]: |
|
pass |
|
else: |
|
try: |
|
if key not in record: |
|
continue |
|
if key == 'leaveAt': |
|
val1 = int(val.split(':')[0]) * 100 + int(val.split(':')[1]) |
|
val2 = int(record['leaveAt'].split(':')[0]) * 100 + int(record['leaveAt'].split(':')[1]) |
|
if val1 > val2: |
|
break |
|
elif key == 'arriveBy': |
|
val1 = int(val.split(':')[0]) * 100 + int(val.split(':')[1]) |
|
val2 = int(record['arriveBy'].split(':')[0]) * 100 + int(record['arriveBy'].split(':')[1]) |
|
if val1 < val2: |
|
break |
|
|
|
elif ignore_open and key in ['destination', 'departure']: |
|
continue |
|
elif record[key].strip() == '?': |
|
|
|
continue |
|
else: |
|
if not fuzzy_match: |
|
if val.strip().lower() != record[key].strip().lower(): |
|
break |
|
else: |
|
if fuzz.partial_ratio(val.strip().lower(), record[key].strip().lower()) < fuzzy_match_ratio: |
|
break |
|
except: |
|
continue |
|
else: |
|
res = deepcopy(record) |
|
res['Ref'] = '{0:08d}'.format(i) |
|
found.append(res) |
|
if len(found) == topk: |
|
return found |
|
return found |
|
|
|
|
|
if __name__ == '__main__': |
|
db = Database() |
|
assert issubclass(Database, BaseDatabase) |
|
assert isinstance(db, BaseDatabase) |
|
res = db.query("restaurant", [['price range', 'expensive']], topk=3) |
|
print(res, len(res)) |
|
|
|
|