Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
shivi SuryaKrishna02 commited on
Commit
38d6abe
1 Parent(s): 1b1c332

Update README.md (#3)

Browse files

- Update README.md (5e530a243fd8f2e1e8d10b423d6c382d695276a6)
- Update README.md (6fa47740adf6a3a9f6f52befa98c4fa25e128070)
- Fixed indentation in metadata (60f755fee197ca8c25d5ce33ad09843bf6507958)
- Uploaded Aya Logo Header Image (fe3e3f39930e8929e0543772f1dfe3133d9b79be)
- Added Citation Info (e0fa576ba821548354b789f61cf051a183e86464)


Co-authored-by: Surya Guthikonda <SuryaKrishna02@users.noreply.huggingface.co>

Files changed (2) hide show
  1. README.md +319 -0
  2. aya_header.png +3 -0
README.md CHANGED
@@ -56,4 +56,323 @@ configs:
56
  data_files:
57
  - split: train
58
  path: demographics/train-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  data_files:
57
  - split: train
58
  path: demographics/train-*
59
+ annotations_creators:
60
+ - crowdsourced
61
+ - expert-generated
62
+ language:
63
+ - amh
64
+ - arb
65
+ - ary
66
+ - ars
67
+ - acq
68
+ - arz
69
+ - apc
70
+ - ben
71
+ - ceb
72
+ - dan
73
+ - deu
74
+ - ell
75
+ - eng
76
+ - eus
77
+ - fil
78
+ - fin
79
+ - fra
80
+ - gle
81
+ - guj
82
+ - hat
83
+ - hau
84
+ - hin
85
+ - hun
86
+ - ibo
87
+ - ind
88
+ - ita
89
+ - jav
90
+ - jpn
91
+ - kan
92
+ - kir
93
+ - kor
94
+ - kur
95
+ - lit
96
+ - mal
97
+ - mar
98
+ - mlg
99
+ - msa
100
+ - mya
101
+ - nep
102
+ - nld
103
+ - nso
104
+ - nya
105
+ - pan
106
+ - pes
107
+ - pol
108
+ - por
109
+ - pus
110
+ - rus
111
+ - sin
112
+ - sna
113
+ - snd
114
+ - som
115
+ - spa
116
+ - sqi
117
+ - srp
118
+ - sun
119
+ - swa
120
+ - swe
121
+ - tam
122
+ - tel
123
+ - tha
124
+ - tur
125
+ - ukr
126
+ - urd
127
+ - vie
128
+ - wol
129
+ - xho
130
+ - yor
131
+ - zho
132
+ - zul
133
+ language_creators:
134
+ - crowdsourced
135
+ - expert-generated
136
+ multilinguality:
137
+ - multilingual
138
+ pretty_name: Aya Dataset
139
+ size_categories:
140
+ - 100K<n<1M
141
+ source_datasets:
142
+ - original
143
+ tags: []
144
+ task_categories:
145
+ - other
146
+ task_ids: []
147
  ---
148
+ ![Aya Header](https://huggingface.co/datasets/CohereForAI/aya_dataset/blob/main/aya_header.png)
149
+ # Dataset Summary
150
+ The `Aya Dataset` is a multilingual instruction fine-tuning dataset curated by an open-science community via [Aya Annotation Platform](https://aya.for.ai/) from Cohere For AI. The dataset contains a total of 204k human-annotated prompt-completion pairs along with the demographics data of the annotaters.
151
+
152
+ - **Curated by:** Contributors of [Aya Open Science Intiative](https://aya.for.ai/).
153
+ - **Language(s):** 65 languages (71 including dialects & scripts).
154
+ - **License:** [Apache 2.0](https://opensource.org/license/apache-2-0)
155
+ - **Supported Tasks:**
156
+ - Training/Fine-tuning LLMs
157
+ - Synthetic Data Generation
158
+ - Data Augmentation
159
+ - **Aya Datasets Family:**
160
+
161
+ | Name | Explanation |
162
+ |------|--------------|
163
+ | [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) | Human-annotated multilingual instruction finetuning dataset, comprising over 204K instances across 65 languages. |
164
+ | [aya_collection](https://huggingface.co/datasets/CohereForAI/aya_collection) | Created by applying instruction-style templates from fluent speakers to 44 datasets, including translations of 19 instruction-style datasets into 101 languages, providing 513k instances for various tasks.|
165
+ | [aya_evaluation_suite](https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite) | A diverse evaluation set for multilingual open-ended generation, featuring 250 culturally grounded prompts in 7 languages, 200 translated prompts in 24 languages, and human-edited versions selected for cross-cultural relevance from English Dolly in 6 languages.|
166
+
167
+ # Dataset
168
+ The `Aya Dataset` comprises of two types of data:
169
+ 1. **Human Annotations:** Original annotations (writing new examples from scratch) and a subset of re-annotations (editing existing examples to improve the quality and comprehensiveness), included only when there's a discernible difference between the original and edited versions. The selection is based on character-level Levenshtein distance, with an acceptance threshold of (d ≥ 5) to avoid duplicates. Languages with at least 50 contributions are included in the dataset, striking a balance between data quality and practical human resource limitations. The aim is to maximize language inclusion without compromising dataset quality.
170
+ 2. **Demographics Data:** Data collected while onboarding a new user into [Aya Annotation Platform](https://aya.for.ai/). We collected some demographic information like country, gender, age range, and the languages along with their dialects that they are comfortable annotating data in.
171
+
172
+ ## Load with Datasets
173
+ To load this dataset consisting of both prompt-completions and demographics data with `datasets`, you'll just need to install Datasets as `pip install datasets --upgrade` and then use the following code:
174
+
175
+ ```python
176
+ from datasets import load_dataset
177
+
178
+ # Load the annotations dataset
179
+ aya_dataset = load_dataset("CohereForAI/aya_dataset")
180
+
181
+ # Load the demographics dataset
182
+ aya_demographics = load_dataset("CohereForAI/aya_dataset", "demographics")
183
+ ```
184
+
185
+ ## Data Fields
186
+ ### Human Annotations (Default)
187
+ The data fields are the same among all splits:
188
+ - `prompt`: Prompt or input to the language model.
189
+ - `completion`: Completion or output of the language model.
190
+ - `language`: The language of the `prompt` and `completion`.
191
+ - `language_code`: The ISO code for the language of the `prompt` and `completion`.
192
+ - `annotation_type`: The value denoting whether `prompt` and `completion` are 'original_annotations' or 're-annotations'.
193
+ - `user_id`: Unique identifier of the annotator who submitted the prompt-completion pair.
194
+
195
+ ### Demographics Data
196
+ The data fields are the same among all splits:
197
+ - `user_id`: Unique identifier of the annotator who submitted the prompt-completion pair.
198
+ - `age_range`: Age of the annotator. Ranges from 0 to 121.
199
+ - `gender`: Gender of the annotator. The values are 'male', 'female', 'prefer not to say', 'non-binary' and 'others'.
200
+ - `languages`: List of languages spoken by the annotator.
201
+ - `dialects`: Dialects reported by the annotator.
202
+
203
+ ## Data Splits
204
+ ### Human Annotations (Default)
205
+ The following are the splits of the data:
206
+ | Split | No. of instances |
207
+ |-------|-----------|
208
+ | train | 202,364|
209
+ | test | 1,750|
210
+
211
+ ### Demographics Data
212
+ The following are the splits of the data:
213
+ | Split | No. of Instances |
214
+ |-------|-----------|
215
+ | train | 1,456 |
216
+
217
+ ## Data Instances
218
+ ### Human Annotations (Default)
219
+ An example of `train` looks as follows:
220
+ ```json
221
+ {
222
+ "prompt": "What cultural events or festivals add vibrancy to Colombo's calendar...",
223
+ "completion": "Colombo's cultural calendar is adorned with diverse events and festivals that celebrate the city's rich tapestry of traditions...",
224
+ "language": "English",
225
+ "language_code": "eng",
226
+ "annotation_type": "original-annotations",
227
+ "user_id": "f0ff69570af705b75c5a0851883e..."
228
+ }
229
+ ```
230
+
231
+ ### Demographics Data
232
+ An example of `train` looks as follows:
233
+ ```json
234
+ {
235
+ "user_id": "f0ff69570af705b75c5a0851883e...",
236
+ "age_range": [ 25, 35 ],
237
+ "gender": "female",
238
+ "languages": [ "English", "Hausa" ],
239
+ "dialects": [ "Hausa" ]
240
+ }
241
+ ```
242
+
243
+ ## Statistics
244
+ ### Annotation Types
245
+ The following is the breakdown of original annotations and re-annotations in the final dataset.
246
+
247
+ | Type of Annotation | Instances |
248
+ |--------------------|-----------|
249
+ | Original Annotations | 138,844 |
250
+ | Re-Annotations | 65,270 |
251
+ | Total | 204,114|
252
+
253
+ ### Languages
254
+ The dataset covers 65 languages: 28 high-resource, 12 mid-resource, and 31 low-resource languages. The following is details about the languages, dialects & scripts included in the dataset.
255
+
256
+ <details>
257
+ <summary> Languages Info </summary>
258
+
259
+ | ISO Code | Language | Resources |
260
+ |----------|----------|-----------|
261
+ | `amh` | Amharic | Low |
262
+ | `arb`, `ary`, `ars`, `acq`, `arz` & `apc` | Arabic (Standard, Moroccan, Najdi, Ta'izzi-Adeni, Egyptian & South Levantine) | High |
263
+ | `ben` | Bengali | Mid |
264
+ | `ceb` | Cebuano | Mid |
265
+ | `dan` | Danish | Mid |
266
+ | `deu` | German | High |
267
+ | `ell` | Greek | Mid |
268
+ | `eng` | English | High |
269
+ | `eus` | Basque | High |
270
+ | `fil` | Filipino | Mid |
271
+ | `fin` | Finnish | Mid |
272
+ | `fra` | French | High |
273
+ | `gle` | Irish | Low |
274
+ | `guj` | Gujarati | Low |
275
+ | `hat` | Haitian Creole | Low |
276
+ | `hau` | Hausa | Low |
277
+ | `hin` | Hindi | High |
278
+ | `hun` | Hungarian | High |
279
+ | `ibo` | Igbo | Low |
280
+ | `ind` | Indonesian | Mid |
281
+ | `ita` | Italian | High |
282
+ | `jav` | Javanese | Low |
283
+ | `jpn` | Japanese | High |
284
+ | `kan` | Kannada | Low |
285
+ | `kir` | Kyrgyz | Low |
286
+ | `kor` | Korean | Mid |
287
+ | `kur` | Kurdish | Low |
288
+ | `lit` | Lithuanian | Mid |
289
+ | `mal` | Malayalam | Low |
290
+ | `mar` | Marathi | Low |
291
+ | `mlg` | Malagasy | Low |
292
+ | `msa` | Malay | Mid |
293
+ | `mya` | Burmese | Low |
294
+ | `nep` | Nepali | Low |
295
+ | `nld` | Dutch | High |
296
+ | `nso` | Northern Sotho | Low |
297
+ | `nya` | Chichewa | Low |
298
+ | `pan` | Punjabi | Low |
299
+ | `pes` | Persian | High |
300
+ | `pol` | Polish | High |
301
+ | `por` | Portuguese | High |
302
+ | `pus` | Pashto | Low |
303
+ | `rus` | Russian | High |
304
+ | `sin` | Sinhala | Low |
305
+ | `sna` | Shona | Low |
306
+ | `snd` | Sindhi | Low |
307
+ | `som` | Somali | Low |
308
+ | `spa` | Spanish | High |
309
+ | `sqi` | Albanian | Low |
310
+ | `srp` | Serbian | High |
311
+ | `sun` | Sundanese | Low |
312
+ | `swa` | Swahili | Low |
313
+ | `swe` | Swedish | High |
314
+ | `tam` | Tamil | Mid |
315
+ | `tel` | Telugu | Low |
316
+ | `tha` | Thai | Mid |
317
+ | `tur` | Turkish | High |
318
+ | `ukr` | Ukrainian | Mid |
319
+ | `urd` | Urdu | Mid |
320
+ | `vie` | Vietnamese | High |
321
+ | `wol` | Wolof | Low |
322
+ | `xho` | Xhosa | Low |
323
+ | `yor` | Yorùbá | Low |
324
+ | `zho` | Chinese (Traditional & Simplified) | High |
325
+ | `zul` | Zulu | Low |
326
+ </details>
327
+ <br>
328
+
329
+ # Motivations & Intentions
330
+ - **Curation Rationale:** The curation effort employed an open-science approach to create a diverse instruction-style dataset through annotators across the globe that ensures comprehensive representation across all languages. The success of the curation effort, led by volunteers across diverse backgrounds, was significantly influenced by their hope to meaningfully bring NLP advancements to their languages.
331
+
332
+
333
+ # Known Limitations
334
+ - **Language and dialect coverage:** The dataset covers a limited fraction of the world's linguistic diversity, with 93% of languages not represented, facing challenges in distinguishing between languages and dialects, lacking coverage for many regional dialects, and excluding programming languages.
335
+ - **Uneven distribution of contributions:** The dataset contains contributions in annotation activities, with a 'long tail' of annotators making only one or two contributions, leading to potential dataset imbalances across languages and a lack of diversity within certain language annotations.
336
+ - **Cultural and Personal Bias:** In the dataset, certain languages have limited representation due to a few dominant annotators, potentially leading to a narrow viewpoint and skewed distribution of content, particularly towards certain domains like news.
337
+ - **Gendered Pronouns:** Many of the languages in the Aya Dataset only contain pronouns that are explicitly gendered (e.g., Arabic) or that lack gender-neutral third-person pronouns for gender-neutral reference (e.g. Estonian).
338
+ - **Formality Distinctions:** The dataset encompasses languages with diverse formality distinctions, involving honorifics and situational choices in pronoun use, reflecting varying levels of standardization influenced by regional, cultural, and identity factors.
339
+ - **Toxic or Offensive Speech:** The Aya Annotation Platform lacked specific flags for toxic speech, relying on human verification and peer review to mitigate offensive content, but there's no guarantee that all potentially offensive data points were removed during the annotation process.
340
+ - **Accounting for mislabeled data:** The Aya Annotation Platform lacks re-labeling capabilities, leading to potential mislabeled data in the Aya Dataset, including instances of incorrect language assignments and non-compliance with instruction-style formatting.
341
+
342
+
343
+ # Additional Information
344
+ ## Provenance
345
+ - **Methods Used:** Crowd-sourced through volunteer annotations, followed by a quality assessment phase in which samples from the dataset were checked.
346
+ - **Methodology Details:**
347
+ - *Source:* Original annotations and edits of opensource NLP datasets
348
+ - *Platform:* [Aya Annotation Platform](https://aya.for.ai/)
349
+ - *Dates of Collection:* Jun 2023 - Dec 2023
350
+
351
+
352
+ ## Dataset Version and Maintenance
353
+ - **Maintenance Status:** Actively Maintained
354
+ - **Version Details:**
355
+ - *Current version:* 1.0
356
+ - *Last Update:* 12/2023
357
+ - *First Release:* 02/2024
358
+ - **Maintenance Plan:** Updates will be periodically made available based on volunteer contributions.
359
+
360
+
361
+ ## Authorship
362
+ - **Publishing Organization:** [Cohere For AI](https://cohere.com/research)
363
+ - **Industry Type:** Not-for-profit - Tech
364
+ - **Contact Details:** https://aya.for.ai/
365
+
366
+
367
+ ## Licensing Information
368
+ This dataset can be used for any purpose, whether academic or commercial, under the terms of the [Apache 2.0](https://opensource.org/license/apache-2-0) License.
369
+
370
+
371
+ ## Citation Information
372
+ ```bibtex
373
+ @misc{ayadata2024,
374
+ title = {Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning},
375
+ author = {Shivalika Singh, Freddie Vargus, Daniel D'souza, Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin Ko, Herumb Shandilya, Jay Patel,Deividas Mataciunas, Laura O'Mahony, Mike Zhang, Ramith Hettiarachchi, Joseph Wilson,Marina Machado, Luisa Souza Moura, Dominik Krzemiński,Hakimeh Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien, Sebastian Ruder,Surya Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann, Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh Fadaee, Sara Hooker},
376
+ year = 2024,
377
+ }
378
+ ```
aya_header.png ADDED

Git LFS Details

  • SHA256: a6b6013a0dd85b50636b50a138841b2f6aee43109570334ace52f6152b8fc0de
  • Pointer size: 132 Bytes
  • Size of remote file: 1.86 MB