nreimers commited on
Commit
2eb8292
1 Parent(s): f9fc4b6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+
5
+ language:
6
+ - sw
7
+
8
+ multilinguality:
9
+ - multilingual
10
+
11
+ pretty_name: MIRACL-corpus
12
+ size_categories: []
13
+ source_datasets: []
14
+ tags: []
15
+
16
+ task_categories:
17
+ - text-retrieval
18
+
19
+ license:
20
+ - apache-2.0
21
+
22
+ task_ids:
23
+ - document-retrieval
24
+ ---
25
+
26
+ # MIRACL (SW) embedded with cohere.ai `multilingual-22-12` encoder
27
+
28
+ We encoded the [MIRACL dataset](https://huggingface.co/miracl) using the [cohere.ai](https://txt.cohere.ai/multilingual/) `multilingual-22-12` embedding model.
29
+
30
+ The query embeddings can be found in [Cohere/miracl-sw-queries-22-12](https://huggingface.co/datasets/Cohere/miracl-sw-queries-22-12) and the corpus embeddings can be found in [Cohere/miracl-sw-corpus-22-12](https://huggingface.co/datasets/Cohere/miracl-sw-corpus-22-12).
31
+
32
+ For the orginal datasets, see [miracl/miracl](https://huggingface.co/datasets/miracl/miracl) and [miracl/miracl-corpus](https://huggingface.co/datasets/miracl/miracl-corpus).
33
+
34
+
35
+ Dataset info:
36
+ > MIRACL 🌍🙌🌏 (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual retrieval dataset that focuses on search across 18 different languages, which collectively encompass over three billion native speakers around the world.
37
+ >
38
+ > The corpus for each language is prepared from a Wikipedia dump, where we keep only the plain text and discard images, tables, etc. Each article is segmented into multiple passages using WikiExtractor based on natural discourse units (e.g., `\n\n` in the wiki markup). Each of these passages comprises a "document" or unit of retrieval. We preserve the Wikipedia article title of each passage.
39
+
40
+ ## Embeddings
41
+ We compute for `title+" "+text` the embeddings using our `multilingual-22-12` embedding model, a state-of-the-art model that works for semantic search in 100 languages. If you want to learn more about this model, have a look at [cohere.ai multilingual embedding model](https://txt.cohere.ai/multilingual/).
42
+
43
+
44
+ ## Loading the dataset
45
+
46
+ You can either load the dataset like this:
47
+ ```python
48
+ from datasets import load_dataset
49
+ docs = load_dataset(f"Cohere/miracl-sw-corpus-22-12", split="train")
50
+ ```
51
+
52
+ Or you can also stream it without downloading it before:
53
+ ```python
54
+ from datasets import load_dataset
55
+ docs = load_dataset(f"Cohere/miracl-sw-corpus-22-12", split="train", streaming=True)
56
+
57
+ for doc in docs:
58
+ docid = doc['docid']
59
+ title = doc['title']
60
+ text = doc['text']
61
+ emb = doc['emb']
62
+ ```
63
+
64
+ ## Search
65
+
66
+ Have a look at [miracl-sw-queries-22-12](https://huggingface.co/datasets/Cohere/miracl-sw-queries-22-12) where we provide also the query embeddings for the MIRACL dataset.
67
+
68
+ To search in the documents, you must use **dot-product**.
69
+
70
+
71
+ And then compare this query embeddings either with a vector database (recommended) or directly computing the dot product.
72
+
73
+ A full search example:
74
+ ```python
75
+ # Attention! For large datasets, this requires a lot of memory to store
76
+ # all document embeddings and to compute the dot product scores.
77
+ # Only use this for smaller datasets. For large datasets, use a vector DB
78
+
79
+ from datasets import load_dataset
80
+ import torch
81
+
82
+ #Load documents + embeddings
83
+ docs = load_dataset(f"Cohere/miracl-sw-corpus-22-12", split="train")
84
+ doc_embeddings = torch.tensor(docs['emb'])
85
+
86
+ # Load queries
87
+ queries = load_dataset(f"Cohere/miracl-sw-queries-22-12", split="dev")
88
+
89
+ # Select the first query as example
90
+ qid = 0
91
+ query = queries[qid]
92
+ query_embedding = torch.tensor(queries['emb'])
93
+
94
+ # Compute dot score between query embedding and document embeddings
95
+ dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1))
96
+ top_k = torch.topk(dot_scores, k=3)
97
+
98
+ # Print results
99
+ print("Query:", query['query'])
100
+ for doc_id in top_k.indices[0].tolist():
101
+ print(docs[doc_id]['title'])
102
+ print(docs[doc_id]['text'])
103
+ ```
104
+
105
+ You can get embeddings for new queries using our API:
106
+ ```python
107
+ #Run: pip install cohere
108
+ import cohere
109
+ co = cohere.Client(f"{api_key}") # You should add your cohere API Key here :))
110
+ texts = ['my search query']
111
+ response = co.embed(texts=texts, model='multilingual-22-12')
112
+ query_embedding = response.embeddings[0] # Get the embedding for the first text
113
+ ```
114
+
115
+ ## Performance
116
+
117
+ In the following table we provide the nDCG@10 scores for the cohere multilingual-22-12 model in comparison to BM25 lexical search and mDPR (as provided in the [MIRACL paper](https://arxiv.org/abs/2210.09984))
118
+
119
+ | Model | cohere multilingual-22-12 | BM25 lexical search | mDPR |
120
+ |-------|---------------------------|--------------------|------|
121
+ | miracl-ar | **64.2** | 48.1 | 49.9 |
122
+ | miracl-bn | **61.5** | 50.8 | 44.3 |
123
+ | miracl-es | **47.0** | 31.9 | 47.8 |
124
+ | miracl-fa | **44.8** | 33.3 | 48 |
125
+ | miracl-fi | **63.7** | 55.1 | 47.2 |
126
+ | miracl-fr | **46.8** | 18.3 | 43.5 |
127
+ | miracl-hi | **50.7** | 45.8 | 38.3 |
128
+ | miracl-id | 44.8 | **44.9** | 27.2 |
129
+ | miracl-ja | **49.0** | 36.9 | 43.9 |
130
+ | miracl-ko | **50.9** | 41.9 | 41.9 |
131
+ | miracl-ru | **49.2** | 33.4 | 40.7 |
132
+ | miracl-sw | **61.4** | 38.3 | 29.9 |
133
+ | miracl-te | **67.8** | 49.4 | 35.6 |
134
+ | miracl-th | **60.2** | 48.4 | 35.8 |
135
+ | miracl-zh | 43.8 | 18 | **51.2** |
136
+ | **Avg** | **53.7** | 39.6 | 41.7 |
137
+