Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
Commit
·
fd49ef4
1
Parent(s):
02c64b3
Replace YAML keys from int to str (#3)
Browse files- Replace YAML keys from int to str (59397487f7da5d2478693cd6ac29139730607bd1)
README.md
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
---
|
2 |
annotations_creators:
|
3 |
- expert-generated
|
4 |
-
language:
|
5 |
-
- en
|
6 |
language_creators:
|
7 |
- expert-generated
|
|
|
|
|
8 |
license:
|
9 |
- unknown
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
-
pretty_name: Text Retrieval Conference Question Answering
|
13 |
size_categories:
|
14 |
- 1K<n<10K
|
15 |
source_datasets:
|
@@ -19,6 +18,7 @@ task_categories:
|
|
19 |
task_ids:
|
20 |
- multi-class-classification
|
21 |
paperswithcode_id: trecqa
|
|
|
22 |
dataset_info:
|
23 |
features:
|
24 |
- name: text
|
@@ -27,66 +27,66 @@ dataset_info:
|
|
27 |
dtype:
|
28 |
class_label:
|
29 |
names:
|
30 |
-
0: ABBR
|
31 |
-
1: ENTY
|
32 |
-
2: DESC
|
33 |
-
3: HUM
|
34 |
-
4: LOC
|
35 |
-
5: NUM
|
36 |
- name: fine_label
|
37 |
dtype:
|
38 |
class_label:
|
39 |
names:
|
40 |
-
0: ABBR:abb
|
41 |
-
1: ABBR:exp
|
42 |
-
2: ENTY:animal
|
43 |
-
3: ENTY:body
|
44 |
-
4: ENTY:color
|
45 |
-
5: ENTY:cremat
|
46 |
-
6: ENTY:currency
|
47 |
-
7: ENTY:dismed
|
48 |
-
8: ENTY:event
|
49 |
-
9: ENTY:food
|
50 |
-
10: ENTY:instru
|
51 |
-
11: ENTY:lang
|
52 |
-
12: ENTY:letter
|
53 |
-
13: ENTY:other
|
54 |
-
14: ENTY:plant
|
55 |
-
15: ENTY:product
|
56 |
-
16: ENTY:religion
|
57 |
-
17: ENTY:sport
|
58 |
-
18: ENTY:substance
|
59 |
-
19: ENTY:symbol
|
60 |
-
20: ENTY:techmeth
|
61 |
-
21: ENTY:termeq
|
62 |
-
22: ENTY:veh
|
63 |
-
23: ENTY:word
|
64 |
-
24: DESC:def
|
65 |
-
25: DESC:desc
|
66 |
-
26: DESC:manner
|
67 |
-
27: DESC:reason
|
68 |
-
28: HUM:gr
|
69 |
-
29: HUM:ind
|
70 |
-
30: HUM:title
|
71 |
-
31: HUM:desc
|
72 |
-
32: LOC:city
|
73 |
-
33: LOC:country
|
74 |
-
34: LOC:mount
|
75 |
-
35: LOC:other
|
76 |
-
36: LOC:state
|
77 |
-
37: NUM:code
|
78 |
-
38: NUM:count
|
79 |
-
39: NUM:date
|
80 |
-
40: NUM:dist
|
81 |
-
41: NUM:money
|
82 |
-
42: NUM:ord
|
83 |
-
43: NUM:other
|
84 |
-
44: NUM:period
|
85 |
-
45: NUM:perc
|
86 |
-
46: NUM:speed
|
87 |
-
47: NUM:temp
|
88 |
-
48: NUM:volsize
|
89 |
-
49: NUM:weight
|
90 |
splits:
|
91 |
- name: train
|
92 |
num_bytes: 385090
|
|
|
1 |
---
|
2 |
annotations_creators:
|
3 |
- expert-generated
|
|
|
|
|
4 |
language_creators:
|
5 |
- expert-generated
|
6 |
+
language:
|
7 |
+
- en
|
8 |
license:
|
9 |
- unknown
|
10 |
multilinguality:
|
11 |
- monolingual
|
|
|
12 |
size_categories:
|
13 |
- 1K<n<10K
|
14 |
source_datasets:
|
|
|
18 |
task_ids:
|
19 |
- multi-class-classification
|
20 |
paperswithcode_id: trecqa
|
21 |
+
pretty_name: Text Retrieval Conference Question Answering
|
22 |
dataset_info:
|
23 |
features:
|
24 |
- name: text
|
|
|
27 |
dtype:
|
28 |
class_label:
|
29 |
names:
|
30 |
+
'0': ABBR
|
31 |
+
'1': ENTY
|
32 |
+
'2': DESC
|
33 |
+
'3': HUM
|
34 |
+
'4': LOC
|
35 |
+
'5': NUM
|
36 |
- name: fine_label
|
37 |
dtype:
|
38 |
class_label:
|
39 |
names:
|
40 |
+
'0': ABBR:abb
|
41 |
+
'1': ABBR:exp
|
42 |
+
'2': ENTY:animal
|
43 |
+
'3': ENTY:body
|
44 |
+
'4': ENTY:color
|
45 |
+
'5': ENTY:cremat
|
46 |
+
'6': ENTY:currency
|
47 |
+
'7': ENTY:dismed
|
48 |
+
'8': ENTY:event
|
49 |
+
'9': ENTY:food
|
50 |
+
'10': ENTY:instru
|
51 |
+
'11': ENTY:lang
|
52 |
+
'12': ENTY:letter
|
53 |
+
'13': ENTY:other
|
54 |
+
'14': ENTY:plant
|
55 |
+
'15': ENTY:product
|
56 |
+
'16': ENTY:religion
|
57 |
+
'17': ENTY:sport
|
58 |
+
'18': ENTY:substance
|
59 |
+
'19': ENTY:symbol
|
60 |
+
'20': ENTY:techmeth
|
61 |
+
'21': ENTY:termeq
|
62 |
+
'22': ENTY:veh
|
63 |
+
'23': ENTY:word
|
64 |
+
'24': DESC:def
|
65 |
+
'25': DESC:desc
|
66 |
+
'26': DESC:manner
|
67 |
+
'27': DESC:reason
|
68 |
+
'28': HUM:gr
|
69 |
+
'29': HUM:ind
|
70 |
+
'30': HUM:title
|
71 |
+
'31': HUM:desc
|
72 |
+
'32': LOC:city
|
73 |
+
'33': LOC:country
|
74 |
+
'34': LOC:mount
|
75 |
+
'35': LOC:other
|
76 |
+
'36': LOC:state
|
77 |
+
'37': NUM:code
|
78 |
+
'38': NUM:count
|
79 |
+
'39': NUM:date
|
80 |
+
'40': NUM:dist
|
81 |
+
'41': NUM:money
|
82 |
+
'42': NUM:ord
|
83 |
+
'43': NUM:other
|
84 |
+
'44': NUM:period
|
85 |
+
'45': NUM:perc
|
86 |
+
'46': NUM:speed
|
87 |
+
'47': NUM:temp
|
88 |
+
'48': NUM:volsize
|
89 |
+
'49': NUM:weight
|
90 |
splits:
|
91 |
- name: train
|
92 |
num_bytes: 385090
|