Datasets:

Languages:
English
License:
albertvillanova HF staff commited on
Commit
fd49ef4
·
1 Parent(s): 02c64b3

Replace YAML keys from int to str (#3)

Browse files

- Replace YAML keys from int to str (59397487f7da5d2478693cd6ac29139730607bd1)

Files changed (1) hide show
  1. README.md +59 -59
README.md CHANGED
@@ -1,15 +1,14 @@
1
  ---
2
  annotations_creators:
3
  - expert-generated
4
- language:
5
- - en
6
  language_creators:
7
  - expert-generated
 
 
8
  license:
9
  - unknown
10
  multilinguality:
11
  - monolingual
12
- pretty_name: Text Retrieval Conference Question Answering
13
  size_categories:
14
  - 1K<n<10K
15
  source_datasets:
@@ -19,6 +18,7 @@ task_categories:
19
  task_ids:
20
  - multi-class-classification
21
  paperswithcode_id: trecqa
 
22
  dataset_info:
23
  features:
24
  - name: text
@@ -27,66 +27,66 @@ dataset_info:
27
  dtype:
28
  class_label:
29
  names:
30
- 0: ABBR
31
- 1: ENTY
32
- 2: DESC
33
- 3: HUM
34
- 4: LOC
35
- 5: NUM
36
  - name: fine_label
37
  dtype:
38
  class_label:
39
  names:
40
- 0: ABBR:abb
41
- 1: ABBR:exp
42
- 2: ENTY:animal
43
- 3: ENTY:body
44
- 4: ENTY:color
45
- 5: ENTY:cremat
46
- 6: ENTY:currency
47
- 7: ENTY:dismed
48
- 8: ENTY:event
49
- 9: ENTY:food
50
- 10: ENTY:instru
51
- 11: ENTY:lang
52
- 12: ENTY:letter
53
- 13: ENTY:other
54
- 14: ENTY:plant
55
- 15: ENTY:product
56
- 16: ENTY:religion
57
- 17: ENTY:sport
58
- 18: ENTY:substance
59
- 19: ENTY:symbol
60
- 20: ENTY:techmeth
61
- 21: ENTY:termeq
62
- 22: ENTY:veh
63
- 23: ENTY:word
64
- 24: DESC:def
65
- 25: DESC:desc
66
- 26: DESC:manner
67
- 27: DESC:reason
68
- 28: HUM:gr
69
- 29: HUM:ind
70
- 30: HUM:title
71
- 31: HUM:desc
72
- 32: LOC:city
73
- 33: LOC:country
74
- 34: LOC:mount
75
- 35: LOC:other
76
- 36: LOC:state
77
- 37: NUM:code
78
- 38: NUM:count
79
- 39: NUM:date
80
- 40: NUM:dist
81
- 41: NUM:money
82
- 42: NUM:ord
83
- 43: NUM:other
84
- 44: NUM:period
85
- 45: NUM:perc
86
- 46: NUM:speed
87
- 47: NUM:temp
88
- 48: NUM:volsize
89
- 49: NUM:weight
90
  splits:
91
  - name: train
92
  num_bytes: 385090
 
1
  ---
2
  annotations_creators:
3
  - expert-generated
 
 
4
  language_creators:
5
  - expert-generated
6
+ language:
7
+ - en
8
  license:
9
  - unknown
10
  multilinguality:
11
  - monolingual
 
12
  size_categories:
13
  - 1K<n<10K
14
  source_datasets:
 
18
  task_ids:
19
  - multi-class-classification
20
  paperswithcode_id: trecqa
21
+ pretty_name: Text Retrieval Conference Question Answering
22
  dataset_info:
23
  features:
24
  - name: text
 
27
  dtype:
28
  class_label:
29
  names:
30
+ '0': ABBR
31
+ '1': ENTY
32
+ '2': DESC
33
+ '3': HUM
34
+ '4': LOC
35
+ '5': NUM
36
  - name: fine_label
37
  dtype:
38
  class_label:
39
  names:
40
+ '0': ABBR:abb
41
+ '1': ABBR:exp
42
+ '2': ENTY:animal
43
+ '3': ENTY:body
44
+ '4': ENTY:color
45
+ '5': ENTY:cremat
46
+ '6': ENTY:currency
47
+ '7': ENTY:dismed
48
+ '8': ENTY:event
49
+ '9': ENTY:food
50
+ '10': ENTY:instru
51
+ '11': ENTY:lang
52
+ '12': ENTY:letter
53
+ '13': ENTY:other
54
+ '14': ENTY:plant
55
+ '15': ENTY:product
56
+ '16': ENTY:religion
57
+ '17': ENTY:sport
58
+ '18': ENTY:substance
59
+ '19': ENTY:symbol
60
+ '20': ENTY:techmeth
61
+ '21': ENTY:termeq
62
+ '22': ENTY:veh
63
+ '23': ENTY:word
64
+ '24': DESC:def
65
+ '25': DESC:desc
66
+ '26': DESC:manner
67
+ '27': DESC:reason
68
+ '28': HUM:gr
69
+ '29': HUM:ind
70
+ '30': HUM:title
71
+ '31': HUM:desc
72
+ '32': LOC:city
73
+ '33': LOC:country
74
+ '34': LOC:mount
75
+ '35': LOC:other
76
+ '36': LOC:state
77
+ '37': NUM:code
78
+ '38': NUM:count
79
+ '39': NUM:date
80
+ '40': NUM:dist
81
+ '41': NUM:money
82
+ '42': NUM:ord
83
+ '43': NUM:other
84
+ '44': NUM:period
85
+ '45': NUM:perc
86
+ '46': NUM:speed
87
+ '47': NUM:temp
88
+ '48': NUM:volsize
89
+ '49': NUM:weight
90
  splits:
91
  - name: train
92
  num_bytes: 385090