segmamba / source_code /sam3 /scripts /extract_odinw_results.py
ChipYTY's picture
Add files using upload-large-folder tool
34a4bcb verified
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
"""This script summarizes odinw results"""
"""
python3 scripts/extract_odinw_results.py --res_dir /path/to/results/directory
Expected directory structure:
results_directory/
├── AerialMaritimeDrone_large/val_stats.json
├── Aquarium/val_stats.json
├── CottontailRabbits/val_stats.json
└── ...
"""
import argparse
import json
import os
VAL13_SET = [
"AerialMaritimeDrone_large",
"Aquarium",
"CottontailRabbits",
"EgoHands_generic",
"NorthAmericaMushrooms",
"Packages",
"PascalVOC",
"Raccoon",
"ShellfishOpenImages",
"VehiclesOpenImages",
"pistols",
"pothole",
"thermalDogsAndPeople",
]
METRIC_NAME = "coco_eval_bbox_AP"
def parse_args():
parser = argparse.ArgumentParser("ODinW results aggregation script")
parser.add_argument(
"--res_dir",
required=True,
type=str,
help="Parent directory containing subdirectories for each dataset with val_stats.json files",
)
return parser.parse_args()
def main(args):
# Dictionary to store results for each metric type
metric_results = {METRIC_NAME: []}
subset_results = {subset: {} for subset in VAL13_SET}
# Process each subset directory
for subset in VAL13_SET:
subset_dir = os.path.join(args.res_dir, subset)
val_stats_path = os.path.join(subset_dir, "val_stats.json")
if not os.path.exists(val_stats_path):
print(f"Warning: {val_stats_path} not found, skipping {subset}")
continue
try:
res = json.load(open(val_stats_path))
subset_results[subset] = res
# Extract metrics for this subset and group by metric type
for key, value in res.items():
if key.endswith(METRIC_NAME):
metric_results[METRIC_NAME].append(value)
except (json.JSONDecodeError, IOError) as e:
print(f"Error reading {val_stats_path}: {e}")
continue
# Print results
values = metric_results[METRIC_NAME]
if values:
avg = sum(values) / len(values)
print(f"Average {METRIC_NAME}: {avg:.4f} ({len(values)} datasets)")
# Show individual dataset results
for subset in VAL13_SET:
if subset in subset_results and subset_results[subset]:
for res_key, res_value in subset_results[subset].items():
if res_key.endswith(METRIC_NAME):
print(f" {subset}: {res_value:.4f}")
break
else:
print(f"No results found for {METRIC_NAME}")
if __name__ == "__main__":
main(parse_args())