|
import torch |
|
|
|
import utils |
|
from utils.hparams import hparams |
|
from .diff.net import DiffNet |
|
from .diff.shallow_diffusion_tts import GaussianDiffusion |
|
from .task import DiffFsTask |
|
from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder |
|
from utils.pitch_utils import denorm_f0 |
|
from tasks.tts.fs2_utils import FastSpeechDataset |
|
|
|
DIFF_DECODERS = { |
|
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']), |
|
} |
|
|
|
|
|
class DiffSpeechTask(DiffFsTask): |
|
def __init__(self): |
|
super(DiffSpeechTask, self).__init__() |
|
self.dataset_cls = FastSpeechDataset |
|
self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() |
|
|
|
def build_tts_model(self): |
|
mel_bins = hparams['audio_num_mel_bins'] |
|
self.model = GaussianDiffusion( |
|
phone_encoder=self.phone_encoder, |
|
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), |
|
timesteps=hparams['timesteps'], |
|
K_step=hparams['K_step'], |
|
loss_type=hparams['diff_loss_type'], |
|
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], |
|
) |
|
if hparams['fs2_ckpt'] != '': |
|
utils.load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) |
|
|
|
for k, v in self.model.fs2.named_parameters(): |
|
if not 'predictor' in k: |
|
v.requires_grad = False |
|
|
|
def build_optimizer(self, model): |
|
self.optimizer = optimizer = torch.optim.AdamW( |
|
filter(lambda p: p.requires_grad, model.parameters()), |
|
lr=hparams['lr'], |
|
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), |
|
weight_decay=hparams['weight_decay']) |
|
return optimizer |
|
|
|
def run_model(self, model, sample, return_output=False, infer=False): |
|
txt_tokens = sample['txt_tokens'] |
|
target = sample['mels'] |
|
|
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
energy = sample['energy'] |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
if hparams['pitch_type'] == 'cwt': |
|
cwt_spec = sample[f'cwt_spec'] |
|
f0_mean = sample['f0_mean'] |
|
f0_std = sample['f0_std'] |
|
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) |
|
|
|
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, |
|
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer) |
|
|
|
losses = {} |
|
if 'diff_loss' in output: |
|
losses['mel'] = output['diff_loss'] |
|
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) |
|
if hparams['use_pitch_embed']: |
|
self.add_pitch_loss(output, sample, losses) |
|
if hparams['use_energy_embed']: |
|
self.add_energy_loss(output['energy_pred'], energy, losses) |
|
if not return_output: |
|
return losses |
|
else: |
|
return losses, output |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
txt_tokens = sample['txt_tokens'] |
|
|
|
energy = sample['energy'] |
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
|
|
outputs['losses'] = {} |
|
|
|
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) |
|
|
|
|
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
outputs = utils.tensors_to_scalars(outputs) |
|
if batch_idx < hparams['num_valid_plots']: |
|
|
|
|
|
|
|
model_out = self.model( |
|
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, ref_mels=None, infer=True) |
|
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=model_out.get('f0_denorm')) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out']) |
|
return outputs |
|
|
|
|
|
|
|
|
|
def plot_wav(self, batch_idx, gt_wav, wav_out, is_mel=False, gt_f0=None, f0=None, name=None): |
|
gt_wav = gt_wav[0].cpu().numpy() |
|
wav_out = wav_out[0].cpu().numpy() |
|
gt_f0 = gt_f0[0].cpu().numpy() |
|
f0 = f0[0].cpu().numpy() |
|
if is_mel: |
|
gt_wav = self.vocoder.spec2wav(gt_wav, f0=gt_f0) |
|
wav_out = self.vocoder.spec2wav(wav_out, f0=f0) |
|
self.logger.experiment.add_audio(f'gt_{batch_idx}', gt_wav, sample_rate=hparams['audio_sample_rate'], global_step=self.global_step) |
|
self.logger.experiment.add_audio(f'wav_{batch_idx}', wav_out, sample_rate=hparams['audio_sample_rate'], global_step=self.global_step) |
|
|
|
|