|
import os |
|
import sys |
|
sys.path.insert(0, '/kaggle/working/ProDiff') |
|
import torch |
|
import utils |
|
from modules.FastDiff.module.FastDiff_model import FastDiff |
|
from tasks.vocoder.vocoder_base import VocoderBaseTask |
|
from utils import audio |
|
from utils.hparams import hparams |
|
from modules.FastDiff.module.util import theta_timestep_loss, compute_hyperparams_given_schedule, sampling_given_noise_schedule |
|
|
|
|
|
class FastDiffTask(VocoderBaseTask): |
|
def __init__(self): |
|
super(FastDiffTask, self).__init__() |
|
|
|
def build_model(self): |
|
self.model = FastDiff(audio_channels=hparams['audio_channels'], |
|
inner_channels=hparams['inner_channels'], |
|
cond_channels=hparams['cond_channels'], |
|
upsample_ratios=hparams['upsample_ratios'], |
|
lvc_layers_each_block=hparams['lvc_layers_each_block'], |
|
lvc_kernel_size=hparams['lvc_kernel_size'], |
|
kpnet_hidden_channels=hparams['kpnet_hidden_channels'], |
|
kpnet_conv_size=hparams['kpnet_conv_size'], |
|
dropout=hparams['dropout'], |
|
diffusion_step_embed_dim_in=hparams['diffusion_step_embed_dim_in'], |
|
diffusion_step_embed_dim_mid=hparams['diffusion_step_embed_dim_mid'], |
|
diffusion_step_embed_dim_out=hparams['diffusion_step_embed_dim_out'], |
|
use_weight_norm=hparams['use_weight_norm']) |
|
utils.print_arch(self.model) |
|
|
|
|
|
noise_schedule = torch.linspace(float(hparams["beta_0"]), float(hparams["beta_T"]), int(hparams["T"])).cuda() |
|
diffusion_hyperparams = compute_hyperparams_given_schedule(noise_schedule) |
|
|
|
|
|
for key in diffusion_hyperparams: |
|
if key in ["beta", "alpha", "sigma"]: |
|
diffusion_hyperparams[key] = diffusion_hyperparams[key].cuda() |
|
self.diffusion_hyperparams = diffusion_hyperparams |
|
|
|
return self.model |
|
|
|
def _training_step(self, sample, batch_idx, optimizer_idx): |
|
mels = sample['mels'] |
|
y = sample['wavs'] |
|
X = (mels, y) |
|
loss = theta_timestep_loss(self.model, X, self.diffusion_hyperparams) |
|
return loss, {'loss': loss} |
|
|
|
|
|
def validation_step(self, sample, batch_idx): |
|
mels = sample['mels'] |
|
y = sample['wavs'] |
|
X = (mels, y) |
|
loss = theta_timestep_loss(self.model, X, self.diffusion_hyperparams) |
|
return loss, {'loss': loss} |
|
|
|
|
|
def test_step(self, sample, batch_idx): |
|
mels = sample['mels'] |
|
y = sample['wavs'] |
|
loss_output = {} |
|
|
|
if hparams['noise_schedule'] != '': |
|
noise_schedule = hparams['noise_schedule'] |
|
if isinstance(noise_schedule, list): |
|
noise_schedule = torch.FloatTensor(noise_schedule).cuda() |
|
else: |
|
|
|
try: |
|
reverse_step = int(hparams.get('N')) |
|
except: |
|
print('Please specify $N (the number of revere iterations) in config file. Now denoise with 4 iterations.') |
|
reverse_step = 4 |
|
if reverse_step == 1000: |
|
noise_schedule = torch.linspace(0.000001, 0.01, 1000).cuda() |
|
elif reverse_step == 200: |
|
noise_schedule = torch.linspace(0.0001, 0.02, 200).cuda() |
|
|
|
|
|
|
|
elif reverse_step == 8: |
|
noise_schedule = [6.689325005027058e-07, 1.0033881153503899e-05, 0.00015496854030061513, |
|
0.002387222135439515, 0.035597629845142365, 0.3681158423423767, 0.4735414385795593, 0.5] |
|
elif reverse_step == 6: |
|
noise_schedule = [1.7838445955931093e-06, 2.7984189728158526e-05, 0.00043231004383414984, |
|
0.006634317338466644, 0.09357017278671265, 0.6000000238418579] |
|
elif reverse_step == 4: |
|
noise_schedule = [3.2176e-04, 2.5743e-03, 2.5376e-02, 7.0414e-01] |
|
elif reverse_step == 3: |
|
noise_schedule = [9.0000e-05, 9.0000e-03, 6.0000e-01] |
|
else: |
|
raise NotImplementedError |
|
|
|
if isinstance(noise_schedule, list): |
|
noise_schedule = torch.FloatTensor(noise_schedule).cuda() |
|
|
|
audio_length = mels.shape[-1] * hparams["hop_size"] |
|
|
|
|
|
y_ = sampling_given_noise_schedule( |
|
self.model, (1, 1, audio_length), self.diffusion_hyperparams, noise_schedule, |
|
condition=mels, ddim=False, return_sequence=False) |
|
gen_dir = os.path.join(hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') |
|
os.makedirs(gen_dir, exist_ok=True) |
|
|
|
if len(y) == 0: |
|
|
|
for idx, (wav_pred, item_name) in enumerate(zip(y_, sample["item_name"])): |
|
wav_pred = wav_pred / wav_pred.abs().max() |
|
audio.save_wav(wav_pred.view(-1).cpu().float().numpy(), f'{gen_dir}/{item_name}_pred.wav', |
|
hparams['audio_sample_rate']) |
|
else: |
|
for idx, (wav_pred, wav_gt, item_name) in enumerate(zip(y_, y, sample["item_name"])): |
|
wav_gt = wav_gt / wav_gt.abs().max() |
|
wav_pred = wav_pred / wav_pred.abs().max() |
|
audio.save_wav(wav_gt.view(-1).cpu().float().numpy(), f'{gen_dir}/{item_name}_gt.wav', hparams['audio_sample_rate']) |
|
audio.save_wav(wav_pred.view(-1).cpu().float().numpy(), f'{gen_dir}/{item_name}_pred.wav', hparams['audio_sample_rate']) |
|
return loss_output |
|
|
|
def build_optimizer(self, model): |
|
self.optimizer = optimizer = torch.optim.AdamW( |
|
self.model.parameters(), |
|
lr=float(hparams['lr']), weight_decay=float(hparams['weight_decay'])) |
|
return optimizer |
|
|
|
def compute_rtf(self, sample, generation_time, sample_rate=22050): |
|
""" |
|
Computes RTF for a given sample. |
|
""" |
|
total_length = sample.shape[-1] |
|
return float(generation_time * sample_rate / total_length) |