|  | import torch.nn as nn | 
					
						
						|  | import torch | 
					
						
						|  | import logging | 
					
						
						|  | from modules.FastDiff.module.modules import DiffusionDBlock, TimeAware_LVCBlock | 
					
						
						|  | from modules.FastDiff.module.util import calc_diffusion_step_embedding | 
					
						
						|  |  | 
					
						
						|  | def swish(x): | 
					
						
						|  | return x * torch.sigmoid(x) | 
					
						
						|  |  | 
					
						
						|  | class FastDiff(nn.Module): | 
					
						
						|  | """FastDiff module.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, | 
					
						
						|  | audio_channels=1, | 
					
						
						|  | inner_channels=32, | 
					
						
						|  | cond_channels=80, | 
					
						
						|  | upsample_ratios=[8, 8, 4], | 
					
						
						|  | lvc_layers_each_block=4, | 
					
						
						|  | lvc_kernel_size=3, | 
					
						
						|  | kpnet_hidden_channels=64, | 
					
						
						|  | kpnet_conv_size=3, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | diffusion_step_embed_dim_in=128, | 
					
						
						|  | diffusion_step_embed_dim_mid=512, | 
					
						
						|  | diffusion_step_embed_dim_out=512, | 
					
						
						|  | use_weight_norm=True): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.diffusion_step_embed_dim_in = diffusion_step_embed_dim_in | 
					
						
						|  |  | 
					
						
						|  | self.audio_channels = audio_channels | 
					
						
						|  | self.cond_channels = cond_channels | 
					
						
						|  | self.lvc_block_nums = len(upsample_ratios) | 
					
						
						|  | self.first_audio_conv = nn.Conv1d(1, inner_channels, | 
					
						
						|  | kernel_size=7, padding=(7 - 1) // 2, | 
					
						
						|  | dilation=1, bias=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.lvc_blocks = nn.ModuleList() | 
					
						
						|  | self.downsample = nn.ModuleList() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.fc_t = nn.ModuleList() | 
					
						
						|  | self.fc_t1 = nn.Linear(diffusion_step_embed_dim_in, diffusion_step_embed_dim_mid) | 
					
						
						|  | self.fc_t2 = nn.Linear(diffusion_step_embed_dim_mid, diffusion_step_embed_dim_out) | 
					
						
						|  |  | 
					
						
						|  | cond_hop_length = 1 | 
					
						
						|  | for n in range(self.lvc_block_nums): | 
					
						
						|  | cond_hop_length = cond_hop_length * upsample_ratios[n] | 
					
						
						|  | lvcb = TimeAware_LVCBlock( | 
					
						
						|  | in_channels=inner_channels, | 
					
						
						|  | cond_channels=cond_channels, | 
					
						
						|  | upsample_ratio=upsample_ratios[n], | 
					
						
						|  | conv_layers=lvc_layers_each_block, | 
					
						
						|  | conv_kernel_size=lvc_kernel_size, | 
					
						
						|  | cond_hop_length=cond_hop_length, | 
					
						
						|  | kpnet_hidden_channels=kpnet_hidden_channels, | 
					
						
						|  | kpnet_conv_size=kpnet_conv_size, | 
					
						
						|  | kpnet_dropout=dropout, | 
					
						
						|  | noise_scale_embed_dim_out=diffusion_step_embed_dim_out | 
					
						
						|  | ) | 
					
						
						|  | self.lvc_blocks += [lvcb] | 
					
						
						|  | self.downsample.append(DiffusionDBlock(inner_channels, inner_channels, upsample_ratios[self.lvc_block_nums-n-1])) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.final_conv = nn.Sequential(nn.Conv1d(inner_channels, audio_channels, kernel_size=7, padding=(7 - 1) // 2, | 
					
						
						|  | dilation=1, bias=True)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_weight_norm: | 
					
						
						|  | self.apply_weight_norm() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, data): | 
					
						
						|  | """Calculate forward propagation. | 
					
						
						|  | Args: | 
					
						
						|  | x (Tensor): Input noise signal (B, 1, T). | 
					
						
						|  | c (Tensor): Local conditioning auxiliary features (B, C ,T'). | 
					
						
						|  | Returns: | 
					
						
						|  | Tensor: Output tensor (B, out_channels, T) | 
					
						
						|  | """ | 
					
						
						|  | audio, c, diffusion_steps = data | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | diffusion_step_embed = calc_diffusion_step_embedding(diffusion_steps, self.diffusion_step_embed_dim_in) | 
					
						
						|  | diffusion_step_embed = swish(self.fc_t1(diffusion_step_embed)) | 
					
						
						|  | diffusion_step_embed = swish(self.fc_t2(diffusion_step_embed)) | 
					
						
						|  |  | 
					
						
						|  | audio = self.first_audio_conv(audio) | 
					
						
						|  | downsample = [] | 
					
						
						|  | for down_layer in self.downsample: | 
					
						
						|  | downsample.append(audio) | 
					
						
						|  | audio = down_layer(audio) | 
					
						
						|  |  | 
					
						
						|  | x = audio | 
					
						
						|  | for n, audio_down in enumerate(reversed(downsample)): | 
					
						
						|  | x = self.lvc_blocks[n]((x, audio_down, c, diffusion_step_embed)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.final_conv(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | """Remove weight normalization module from all of the layers.""" | 
					
						
						|  | def _remove_weight_norm(m): | 
					
						
						|  | try: | 
					
						
						|  | logging.debug(f"Weight norm is removed from {m}.") | 
					
						
						|  | torch.nn.utils.remove_weight_norm(m) | 
					
						
						|  | except ValueError: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | self.apply(_remove_weight_norm) | 
					
						
						|  |  | 
					
						
						|  | def apply_weight_norm(self): | 
					
						
						|  | """Apply weight normalization module from all of the layers.""" | 
					
						
						|  | def _apply_weight_norm(m): | 
					
						
						|  | if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d): | 
					
						
						|  | torch.nn.utils.weight_norm(m) | 
					
						
						|  | logging.debug(f"Weight norm is applied to {m}.") | 
					
						
						|  |  | 
					
						
						|  | self.apply(_apply_weight_norm) | 
					
						
						|  |  | 
					
						
						|  |  |