Datasets:
Tasks:
Object Detection
Sub-tasks:
face-detection
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""WIDER FACE dataset.""" | |
import os | |
import datasets | |
_HOMEPAGE = "http://shuoyang1213.me/WIDERFACE/" | |
_LICENSE = "Unknown" | |
_CITATION = """\ | |
@inproceedings{yang2016wider, | |
Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou}, | |
Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | |
Title = {WIDER FACE: A Face Detection Benchmark}, | |
Year = {2016}} | |
""" | |
_DESCRIPTION = """\ | |
WIDER FACE dataset is a face detection benchmark dataset, of which images are | |
selected from the publicly available WIDER dataset. We choose 32,203 images and | |
label 393,703 faces with a high degree of variability in scale, pose and | |
occlusion as depicted in the sample images. WIDER FACE dataset is organized | |
based on 61 event classes. For each event class, we randomly select 40%/10%/50% | |
data as training, validation and testing sets. We adopt the same evaluation | |
metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets, | |
we do not release bounding box ground truth for the test images. Users are | |
required to submit final prediction files, which we shall proceed to evaluate. | |
""" | |
_TRAIN_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=15hGDLhsx8bLgLcIRD5DhYt5iBxnjNF1M&export=download" | |
_TEST_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1HIfDbVEWKmsYKJZm4lchTBDLW5N7dY5T&export=download" | |
_VALIDATION_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1GUCogbp16PMGa39thoMMeWxp7Rp5oM8Q&export=download" | |
_ANNOT_DOWNLOAD_URL = "http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip" | |
class WiderFace(datasets.GeneratorBasedBuilder): | |
"""WIDER FACE dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"faces": datasets.Sequence( | |
{ | |
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), | |
"blur": datasets.ClassLabel(names=["clear", "normal", "heavy"]), | |
"expression": datasets.ClassLabel(names=["typical", "exaggerate"]), | |
"illumination": datasets.ClassLabel(names=["normal", "exaggerate "]), | |
"occlusion": datasets.ClassLabel(names=["no", "partial", "heavy"]), | |
"pose": datasets.ClassLabel(names=["typical", "atypical"]), | |
"invalid": datasets.Value("bool"), | |
} | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
train_dir, test_dir, validation_dir, annot_dir = dl_manager.download_and_extract( | |
[_TRAIN_DOWNLOAD_URL, _TEST_DOWNLOAD_URL, _VALIDATION_DOWNLOAD_URL, _ANNOT_DOWNLOAD_URL] | |
) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"split": "train", | |
"data_dir": train_dir, | |
"annot_dir": annot_dir, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"split": "test", | |
"data_dir": test_dir, | |
"annot_dir": annot_dir, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"split": "val", | |
"data_dir": validation_dir, | |
"annot_dir": annot_dir, | |
}, | |
), | |
] | |
def _generate_examples(self, split, data_dir, annot_dir): | |
image_dir = os.path.join(data_dir, "WIDER_" + split, "images") | |
annot_fname = "wider_face_test_filelist.txt" if split == "test" else f"wider_face_{split}_bbx_gt.txt" | |
with open(os.path.join(annot_dir, "wider_face_split", annot_fname), "r", encoding="utf-8") as f: | |
idx = 0 | |
while True: | |
line = f.readline() | |
line = line.rstrip() | |
if not line.endswith(".jpg"): | |
break | |
image_file_path = os.path.join(image_dir, line) | |
faces = [] | |
if split != "test": | |
# Read number of bounding boxes | |
nbboxes = int(f.readline()) | |
# Cases with 0 bounding boxes, still have one line with all zeros. | |
# So we have to read it and discard it. | |
if nbboxes == 0: | |
f.readline() | |
else: | |
for _ in range(nbboxes): | |
line = f.readline() | |
line = line.rstrip() | |
line_split = line.split() | |
assert len(line_split) == 10, f"Cannot parse line: {line_split}" | |
line_parsed = [int(n) for n in line_split] | |
( | |
xmin, | |
ymin, | |
wbox, | |
hbox, | |
blur, | |
expression, | |
illumination, | |
invalid, | |
occlusion, | |
pose, | |
) = line_parsed | |
faces.append( | |
{ | |
"bbox": [xmin, ymin, wbox, hbox], | |
"blur": blur, | |
"expression": expression, | |
"illumination": illumination, | |
"occlusion": occlusion, | |
"pose": pose, | |
"invalid": invalid, | |
} | |
) | |
yield idx, {"image": image_file_path, "faces": faces} | |
idx += 1 | |