Datasets:

albertvillanova HF staff commited on
Commit
d579ec8
1 Parent(s): a166f68

Delete loading script

Browse files
Files changed (1) hide show
  1. vctk.py +0 -133
vctk.py DELETED
@@ -1,133 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """VCTK dataset."""
18
-
19
-
20
- import os
21
- import re
22
-
23
- import datasets
24
- from datasets.tasks import AutomaticSpeechRecognition
25
-
26
-
27
- _CITATION = """\
28
- @inproceedings{Veaux2017CSTRVC,
29
- title = {CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit},
30
- author = {Christophe Veaux and Junichi Yamagishi and Kirsten MacDonald},
31
- year = 2017
32
- }
33
- """
34
-
35
- _DESCRIPTION = """\
36
- The CSTR VCTK Corpus includes speech data uttered by 110 English speakers with various accents.
37
- """
38
-
39
- _URL = "https://datashare.ed.ac.uk/handle/10283/3443"
40
- _DL_URL = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip"
41
-
42
-
43
- class VCTK(datasets.GeneratorBasedBuilder):
44
- """VCTK dataset."""
45
-
46
- VERSION = datasets.Version("0.9.2")
47
-
48
- BUILDER_CONFIGS = [
49
- datasets.BuilderConfig(name="main", version=VERSION, description="VCTK dataset"),
50
- ]
51
-
52
- def _info(self):
53
- return datasets.DatasetInfo(
54
- description=_DESCRIPTION,
55
- features=datasets.Features(
56
- {
57
- "speaker_id": datasets.Value("string"),
58
- "audio": datasets.features.Audio(sampling_rate=48_000),
59
- "file": datasets.Value("string"),
60
- "text": datasets.Value("string"),
61
- "text_id": datasets.Value("string"),
62
- "age": datasets.Value("string"),
63
- "gender": datasets.Value("string"),
64
- "accent": datasets.Value("string"),
65
- "region": datasets.Value("string"),
66
- "comment": datasets.Value("string"),
67
- }
68
- ),
69
- supervised_keys=("file", "text"),
70
- homepage=_URL,
71
- citation=_CITATION,
72
- task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
73
- )
74
-
75
- def _split_generators(self, dl_manager):
76
- root_path = dl_manager.download_and_extract(_DL_URL)
77
-
78
- return [
79
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"root_path": root_path}),
80
- ]
81
-
82
- def _generate_examples(self, root_path):
83
- """Generate examples from the VCTK corpus root path."""
84
-
85
- meta_path = os.path.join(root_path, "speaker-info.txt")
86
- txt_root = os.path.join(root_path, "txt")
87
- wav_root = os.path.join(root_path, "wav48_silence_trimmed")
88
- # NOTE: "comment" is handled separately in logic below
89
- fields = ["speaker_id", "age", "gender", "accent", "region"]
90
-
91
- key = 0
92
- with open(meta_path, encoding="utf-8") as meta_file:
93
- _ = next(iter(meta_file))
94
- for line in meta_file:
95
- data = {}
96
- line = line.strip()
97
- search = re.search(r"\(.*\)", line)
98
- if search is None:
99
- data["comment"] = ""
100
- else:
101
- start, _ = search.span()
102
- data["comment"] = line[start:]
103
- line = line[:start]
104
- values = line.split()
105
- for i, field in enumerate(fields):
106
- if field == "region":
107
- data[field] = " ".join(values[i:])
108
- else:
109
- data[field] = values[i] if i < len(values) else ""
110
- speaker_id = data["speaker_id"]
111
- speaker_txt_path = os.path.join(txt_root, speaker_id)
112
- speaker_wav_path = os.path.join(wav_root, speaker_id)
113
- # NOTE: p315 does not have text
114
- if not os.path.exists(speaker_txt_path):
115
- continue
116
- for txt_file in sorted(os.listdir(speaker_txt_path)):
117
- filename, _ = os.path.splitext(txt_file)
118
- _, text_id = filename.split("_")
119
- for i in [1, 2]:
120
- wav_file = os.path.join(speaker_wav_path, f"{filename}_mic{i}.flac")
121
- # NOTE: p280 does not have mic2 files
122
- if not os.path.exists(wav_file):
123
- continue
124
- with open(os.path.join(speaker_txt_path, txt_file), encoding="utf-8") as text_file:
125
- text = text_file.readline().strip()
126
- more_data = {
127
- "file": wav_file,
128
- "audio": wav_file,
129
- "text": text,
130
- "text_id": text_id,
131
- }
132
- yield key, {**data, **more_data}
133
- key += 1