|
|
""" |
|
|
Preprocessing Script for ToF-360 |
|
|
|
|
|
Author: Mahdi Chamseddine (mahdi.chamseddine@dfki.de) |
|
|
Please cite our work if the code is helpful to you. |
|
|
""" |
|
|
from pathlib import Path |
|
|
|
|
|
import cv2 |
|
|
import numpy as np |
|
|
import open3d as o3d |
|
|
|
|
|
|
|
|
def map_label(label: int) -> int: |
|
|
|
|
|
match label: |
|
|
case 0 | 33 | 34: |
|
|
return -1 |
|
|
case 2 | 20 | 42: |
|
|
return 0 |
|
|
case 3 | 18: |
|
|
return 1 |
|
|
case 1 | 40: |
|
|
return 2 |
|
|
|
|
|
|
|
|
case 14: |
|
|
return 4 |
|
|
case 8: |
|
|
return 5 |
|
|
case 7: |
|
|
return 6 |
|
|
case 12: |
|
|
return 7 |
|
|
case 5: |
|
|
return 8 |
|
|
case 4: |
|
|
return 9 |
|
|
case 31: |
|
|
return 10 |
|
|
|
|
|
|
|
|
case _: |
|
|
return 12 |
|
|
|
|
|
|
|
|
def downsample(xyz: np.ndarray, voxel_size: float = 0.01) -> np.ndarray: |
|
|
min_vals = np.min(xyz, axis=0) |
|
|
max_vals = np.max(xyz, axis=0) |
|
|
point_cloud = o3d.geometry.PointCloud() |
|
|
point_cloud.points = o3d.utility.Vector3dVector(xyz) |
|
|
_, _, indices = point_cloud.voxel_down_sample_and_trace( |
|
|
voxel_size, min_vals, max_vals |
|
|
) |
|
|
indices = [np.random.choice(idx) for idx in indices] |
|
|
return np.asarray(indices) |
|
|
|
|
|
|
|
|
def preprocess_scans(area_path: Path) -> None: |
|
|
xyz_dir = area_path / "XYZ" |
|
|
for scan_path in xyz_dir.glob("*.npy*"): |
|
|
scan_name = scan_path.stem[: -len("_xxx")] |
|
|
parse_scan(scan_name, area_path) |
|
|
|
|
|
|
|
|
def parse_scan(scan_name: str, area_path: Path, debug: bool = False): |
|
|
output_name = area_path.stem + "_" + scan_name |
|
|
print(f"Parsing scan: {output_name}", flush=True) |
|
|
processed_path = ( |
|
|
area_path.parent.parent / "preprocessed" / area_path.parent.stem / output_name |
|
|
) |
|
|
|
|
|
|
|
|
processed_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
print(f"--- [{output_name}] reading point cloud", flush=True) |
|
|
xyz_path = Path(area_path / "XYZ", scan_name + "_XYZ.npy") |
|
|
temp = np.load(xyz_path) |
|
|
|
|
|
temp = temp.reshape(-1, 3) / 1000 |
|
|
coord = temp.copy() |
|
|
coord[:, 1] = temp[:, 2] |
|
|
coord[:, 2] = -temp[:, 1] |
|
|
png_path = Path(area_path / "RGB", scan_name + "_rgb.png") |
|
|
color = cv2.imread(png_path.resolve()) |
|
|
color = cv2.cvtColor(color, cv2.COLOR_BGR2RGB).reshape(-1, 3) / 255 |
|
|
|
|
|
print(f"--- [{output_name}] loading labels", flush=True) |
|
|
semantic_path = Path(area_path / "semantics", scan_name + "_semantic.npy") |
|
|
segment = np.load(semantic_path).reshape(-1) |
|
|
segment = np.vectorize(map_label)(segment) |
|
|
|
|
|
normal_path = Path(area_path / "normal", scan_name + "_normal.png") |
|
|
temp = cv2.imread(normal_path.resolve()) |
|
|
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB).reshape(-1, 3) * 2 / 255 |
|
|
temp = temp - 1 |
|
|
normal = temp.copy() |
|
|
normal[:, 1] = temp[:, 2] |
|
|
normal[:, 2] = -temp[:, 1] |
|
|
|
|
|
print(f"--- [{output_name}] down sampling", flush=True) |
|
|
idx = downsample(coord) |
|
|
|
|
|
print(f"--- [{output_name}] saving", flush=True) |
|
|
coord = np.ascontiguousarray(coord[idx, :], dtype=np.float32) |
|
|
np.save(Path(processed_path, "coord.npy"), coord) |
|
|
color = np.ascontiguousarray(color[idx, :], dtype=np.float32) |
|
|
np.save(Path(processed_path, "color.npy"), color) |
|
|
normal = np.ascontiguousarray(normal[idx, :], dtype=np.float32) |
|
|
np.save(Path(processed_path, "normal.npy"), normal) |
|
|
segment = np.ascontiguousarray(segment[idx], dtype=np.int32) |
|
|
np.save(Path(processed_path, "segment.npy"), segment) |
|
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
splits = [""] |
|
|
dataset_directory = "path/to/ToF-360/" |
|
|
|
|
|
areas = ["Hospital", "Office_Room_1", "Office_Room_2", "Parking_Lot"] |
|
|
|
|
|
for split in splits: |
|
|
split_directory = dataset_directory + split |
|
|
split_path = Path(split_directory) |
|
|
|
|
|
if not split_path.is_dir(): |
|
|
print( |
|
|
f"Error: '{split_path.resolve()}' is not a valid directory.", |
|
|
flush=True, |
|
|
) |
|
|
return |
|
|
for area_path in split_path.iterdir(): |
|
|
if area_path.is_dir() and area_path.stem in areas: |
|
|
preprocess_scans(area_path) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|