|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
library(tidyverse) |
|
|
library(GenomicRanges) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
calculate_enrichment <- function(total_background_hops, |
|
|
total_experiment_hops, |
|
|
background_hops, |
|
|
experiment_hops, |
|
|
pseudocount = 0.1) { |
|
|
|
|
|
|
|
|
if (!all(is.numeric(c(total_background_hops, total_experiment_hops, |
|
|
background_hops, experiment_hops)))) { |
|
|
stop("All inputs must be numeric") |
|
|
} |
|
|
|
|
|
|
|
|
n_regions <- length(background_hops) |
|
|
|
|
|
|
|
|
if (length(experiment_hops) != n_regions) { |
|
|
stop("background_hops and experiment_hops must be the same length") |
|
|
} |
|
|
|
|
|
|
|
|
if (length(total_background_hops) == 1) { |
|
|
total_background_hops <- rep(total_background_hops, n_regions) |
|
|
} |
|
|
if (length(total_experiment_hops) == 1) { |
|
|
total_experiment_hops <- rep(total_experiment_hops, n_regions) |
|
|
} |
|
|
|
|
|
|
|
|
if (length(total_background_hops) != n_regions || |
|
|
length(total_experiment_hops) != n_regions) { |
|
|
stop("All input vectors must be the same length or scalars") |
|
|
} |
|
|
|
|
|
|
|
|
numerator <- experiment_hops / total_experiment_hops |
|
|
denominator <- (background_hops + pseudocount) / total_background_hops |
|
|
enrichment <- numerator / denominator |
|
|
|
|
|
|
|
|
if (any(enrichment < 0, na.rm = TRUE)) { |
|
|
stop("Enrichment values must be non-negative") |
|
|
} |
|
|
if (any(is.na(enrichment))) { |
|
|
stop("Enrichment values must not be NA") |
|
|
} |
|
|
if (any(is.infinite(enrichment))) { |
|
|
stop("Enrichment values must not be infinite") |
|
|
} |
|
|
|
|
|
return(enrichment) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
calculate_poisson_pval <- function(total_background_hops, |
|
|
total_experiment_hops, |
|
|
background_hops, |
|
|
experiment_hops, |
|
|
pseudocount = 0.1, |
|
|
...) { |
|
|
|
|
|
|
|
|
if (!all(is.numeric(c(total_background_hops, total_experiment_hops, |
|
|
background_hops, experiment_hops)))) { |
|
|
stop("All inputs must be numeric") |
|
|
} |
|
|
|
|
|
|
|
|
n_regions <- length(background_hops) |
|
|
|
|
|
|
|
|
if (length(experiment_hops) != n_regions) { |
|
|
stop("background_hops and experiment_hops must be the same length") |
|
|
} |
|
|
|
|
|
|
|
|
if (length(total_background_hops) == 1) { |
|
|
total_background_hops <- rep(total_background_hops, n_regions) |
|
|
} |
|
|
if (length(total_experiment_hops) == 1) { |
|
|
total_experiment_hops <- rep(total_experiment_hops, n_regions) |
|
|
} |
|
|
|
|
|
|
|
|
if (length(total_background_hops) != n_regions || |
|
|
length(total_experiment_hops) != n_regions) { |
|
|
stop("All input vectors must be the same length or scalars") |
|
|
} |
|
|
|
|
|
|
|
|
hop_ratio <- total_experiment_hops / total_background_hops |
|
|
|
|
|
|
|
|
|
|
|
mu <- (background_hops + pseudocount) * hop_ratio |
|
|
|
|
|
|
|
|
x <- experiment_hops |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pval <- ppois(x - 1, lambda = mu, lower.tail = FALSE, ...) |
|
|
|
|
|
return(pval) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
calculate_hypergeom_pval <- function(total_background_hops, |
|
|
total_experiment_hops, |
|
|
background_hops, |
|
|
experiment_hops, |
|
|
...) { |
|
|
|
|
|
|
|
|
if (!all(is.numeric(c(total_background_hops, total_experiment_hops, |
|
|
background_hops, experiment_hops)))) { |
|
|
stop("All inputs must be numeric") |
|
|
} |
|
|
|
|
|
|
|
|
n_regions <- length(background_hops) |
|
|
|
|
|
|
|
|
if (length(experiment_hops) != n_regions) { |
|
|
stop("background_hops and experiment_hops must be the same length") |
|
|
} |
|
|
|
|
|
|
|
|
if (length(total_background_hops) == 1) { |
|
|
total_background_hops <- rep(total_background_hops, n_regions) |
|
|
} |
|
|
if (length(total_experiment_hops) == 1) { |
|
|
total_experiment_hops <- rep(total_experiment_hops, n_regions) |
|
|
} |
|
|
|
|
|
|
|
|
if (length(total_background_hops) != n_regions || |
|
|
length(total_experiment_hops) != n_regions) { |
|
|
stop("All input vectors must be the same length or scalars") |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
M <- total_background_hops + total_experiment_hops |
|
|
|
|
|
n <- total_experiment_hops |
|
|
|
|
|
N <- background_hops + experiment_hops |
|
|
|
|
|
x <- experiment_hops - 1 |
|
|
|
|
|
|
|
|
valid <- (M >= 1) & (N >= 1) |
|
|
pval <- rep(1, length(M)) |
|
|
|
|
|
|
|
|
if (any(valid)) { |
|
|
pval[valid] <- phyper(x[valid], n[valid], M[valid] - n[valid], N[valid], |
|
|
lower.tail = FALSE, ...) |
|
|
} |
|
|
|
|
|
return(pval) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bed_to_granges <- function(bed_df, zero_indexed = TRUE) { |
|
|
|
|
|
if (!all(c("chr", "start", "end") %in% names(bed_df))) { |
|
|
stop("bed_df must have columns: chr, start, end") |
|
|
} |
|
|
|
|
|
|
|
|
if (zero_indexed) { |
|
|
gr_start <- bed_df$start + 1 |
|
|
gr_end <- bed_df$end |
|
|
} else { |
|
|
gr_start <- bed_df$start |
|
|
gr_end <- bed_df$end |
|
|
} |
|
|
|
|
|
|
|
|
gr <- GRanges( |
|
|
seqnames = bed_df$chr, |
|
|
ranges = IRanges(start = gr_start, end = gr_end), |
|
|
strand = "*" |
|
|
) |
|
|
|
|
|
|
|
|
extra_cols <- setdiff(names(bed_df), c("chr", "start", "end", "strand")) |
|
|
if (length(extra_cols) > 0) { |
|
|
mcols(gr) <- bed_df[, extra_cols, drop = FALSE] |
|
|
} |
|
|
|
|
|
return(gr) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
deduplicate_granges <- function(gr) { |
|
|
|
|
|
unique_ranges <- !duplicated(granges(gr)) |
|
|
gr[unique_ranges] |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
count_overlaps <- function(insertions_gr, regions_gr, deduplicate = TRUE) { |
|
|
|
|
|
|
|
|
if (deduplicate) { |
|
|
n_before <- length(insertions_gr) |
|
|
insertions_gr <- deduplicate_granges(insertions_gr) |
|
|
n_after <- length(insertions_gr) |
|
|
if (n_before != n_after) { |
|
|
message(" Deduplicated: ", n_before, " -> ", n_after, |
|
|
" (removed ", n_before - n_after, " duplicates)") |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
counts <- countOverlaps(regions_gr, insertions_gr) |
|
|
|
|
|
return(counts) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
enrichment_analysis <- function(experiment_gr, |
|
|
background_gr, |
|
|
regions_gr, |
|
|
deduplicate_experiment = TRUE, |
|
|
pseudocount = 0.1) { |
|
|
|
|
|
message("Starting enrichment analysis...") |
|
|
|
|
|
|
|
|
if (!inherits(experiment_gr, "GRanges")) { |
|
|
stop("experiment_gr must be a GRanges object") |
|
|
} |
|
|
if (!inherits(background_gr, "GRanges")) { |
|
|
stop("background_gr must be a GRanges object") |
|
|
} |
|
|
if (!inherits(regions_gr, "GRanges")) { |
|
|
stop("regions_gr must be a GRanges object") |
|
|
} |
|
|
|
|
|
|
|
|
message("Counting experiment overlaps...") |
|
|
if (deduplicate_experiment) { |
|
|
message(" Deduplication: ON") |
|
|
} else { |
|
|
message(" Deduplication: OFF") |
|
|
} |
|
|
|
|
|
experiment_counts <- count_overlaps( |
|
|
experiment_gr, regions_gr, |
|
|
deduplicate = deduplicate_experiment |
|
|
) |
|
|
|
|
|
|
|
|
message("Counting background overlaps...") |
|
|
message(" Deduplication: OFF (background should not be deduplicated)") |
|
|
|
|
|
background_counts <- count_overlaps( |
|
|
background_gr, regions_gr, |
|
|
deduplicate = FALSE |
|
|
) |
|
|
|
|
|
|
|
|
if (deduplicate_experiment) { |
|
|
experiment_gr_dedup <- deduplicate_granges(experiment_gr) |
|
|
total_experiment_hops <- length(experiment_gr_dedup) |
|
|
} else { |
|
|
total_experiment_hops <- length(experiment_gr) |
|
|
} |
|
|
|
|
|
total_background_hops <- length(background_gr) |
|
|
|
|
|
message("Total experiment hops: ", total_experiment_hops) |
|
|
message("Total background hops: ", total_background_hops) |
|
|
|
|
|
if (total_experiment_hops == 0) { |
|
|
stop("Experiment data is empty") |
|
|
} |
|
|
if (total_background_hops == 0) { |
|
|
stop("Background data is empty") |
|
|
} |
|
|
|
|
|
|
|
|
mcols(regions_gr)$experiment_hops <- as.integer(experiment_counts) |
|
|
mcols(regions_gr)$background_hops <- as.integer(background_counts) |
|
|
mcols(regions_gr)$total_experiment_hops <- as.integer(total_experiment_hops) |
|
|
mcols(regions_gr)$total_background_hops <- as.integer(total_background_hops) |
|
|
|
|
|
|
|
|
message("Calculating enrichment scores...") |
|
|
mcols(regions_gr)$callingcards_enrichment <- calculate_enrichment( |
|
|
total_background_hops = total_background_hops, |
|
|
total_experiment_hops = total_experiment_hops, |
|
|
background_hops = background_counts, |
|
|
experiment_hops = experiment_counts, |
|
|
pseudocount = pseudocount |
|
|
) |
|
|
|
|
|
message("Calculating Poisson p-values...") |
|
|
mcols(regions_gr)$poisson_pval <- calculate_poisson_pval( |
|
|
total_background_hops = total_background_hops, |
|
|
total_experiment_hops = total_experiment_hops, |
|
|
background_hops = background_counts, |
|
|
experiment_hops = experiment_counts, |
|
|
pseudocount = pseudocount |
|
|
) |
|
|
|
|
|
message("Calculating log Poisson p-values...") |
|
|
mcols(regions_gr)$log_poisson_pval <- calculate_poisson_pval( |
|
|
total_background_hops = total_background_hops, |
|
|
total_experiment_hops = total_experiment_hops, |
|
|
background_hops = background_counts, |
|
|
experiment_hops = experiment_counts, |
|
|
pseudocount = pseudocount, |
|
|
log.p = TRUE |
|
|
) |
|
|
|
|
|
message("Calculating hypergeometric p-values...") |
|
|
mcols(regions_gr)$hypergeometric_pval <- calculate_hypergeom_pval( |
|
|
total_background_hops = total_background_hops, |
|
|
total_experiment_hops = total_experiment_hops, |
|
|
background_hops = background_counts, |
|
|
experiment_hops = experiment_counts |
|
|
) |
|
|
|
|
|
|
|
|
message("Calculating adjusted p-values...") |
|
|
mcols(regions_gr)$poisson_qval <- p.adjust(mcols(regions_gr)$poisson_pval, method = "fdr") |
|
|
mcols(regions_gr)$hypergeometric_qval <- p.adjust(mcols(regions_gr)$hypergeometric_pval, method = "fdr") |
|
|
|
|
|
message("Analysis complete!") |
|
|
|
|
|
return(regions_gr) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
experiment_gr = arrow::open_dataset("~/code/hf/barkai_compendium/genome_map") |
|
|
|
|
|
accessions <- experiment_gr |> |
|
|
dplyr::select(accession) |> |
|
|
dplyr::distinct() |> |
|
|
dplyr::collect() |> |
|
|
dplyr::pull(accession) |
|
|
|
|
|
tmp_acc = experiment_gr %>% |
|
|
filter(accession==accessions[1]) %>% |
|
|
collect() |
|
|
|
|
|
mahendrawada_control_data_root = "~/projects/parsing_yeast_database_data/data/mahendrawada_chec" |
|
|
background_gr_h_m_paths = list.files(mahendrawada_control_data_root) |
|
|
background_gr_h_m = map(file.path(mahendrawada_control_data_root, |
|
|
background_gr_h_m_paths), |
|
|
rtracklayer::import) |
|
|
names(background_gr_h_m) = str_remove(background_gr_h_m_paths, "_REP1.mLb.mkD.sorted_5p.bed") |
|
|
|
|
|
regions_gr <- read_tsv("~/code/hf/yeast_genome_resources/yiming_promoters.bed", |
|
|
col_names = c('chr', 'start', 'end', 'locus_tag', 'score', 'strand')) %>% |
|
|
bed_to_granges() |
|
|
|
|
|
|
|
|
results <- enrichment_analysis( |
|
|
experiment_gr = experiment_gr, |
|
|
background_gr = background_gr, |
|
|
regions_gr = regions_gr, |
|
|
deduplicate_experiment = TRUE, |
|
|
pseudocount = 0.1 |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|