Datasets:
Languages:
Portuguese
Upload autotrain (1).ipynb
Browse files- autotrain (1).ipynb +773 -0
autotrain (1).ipynb
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"id": "efSw4FzN89ia",
|
11 |
+
"outputId": "e8733152-31fd-420f-8a14-0bca6af46641"
|
12 |
+
},
|
13 |
+
"outputs": [
|
14 |
+
{
|
15 |
+
"output_type": "stream",
|
16 |
+
"name": "stdout",
|
17 |
+
"text": [
|
18 |
+
"Cloning into '/content/Kohya-Colab'...\n",
|
19 |
+
"remote: Enumerating objects: 2158, done.\u001b[K\n",
|
20 |
+
"remote: Counting objects: 100% (893/893), done.\u001b[K\n",
|
21 |
+
"remote: Compressing objects: 100% (231/231), done.\u001b[K\n",
|
22 |
+
"remote: Total 2158 (delta 738), reused 671 (delta 662), pack-reused 1265 (from 1)\u001b[K\n",
|
23 |
+
"Receiving objects: 100% (2158/2158), 4.43 MiB | 6.82 MiB/s, done.\n",
|
24 |
+
"Resolving deltas: 100% (1418/1418), done.\n",
|
25 |
+
"The following additional packages will be installed:\n",
|
26 |
+
" libaria2-0 libc-ares2\n",
|
27 |
+
"The following NEW packages will be installed:\n",
|
28 |
+
" aria2 libaria2-0 libc-ares2\n",
|
29 |
+
"0 upgraded, 3 newly installed, 0 to remove and 49 not upgraded.\n",
|
30 |
+
"Need to get 1,513 kB of archives.\n",
|
31 |
+
"After this operation, 5,441 kB of additional disk space will be used.\n",
|
32 |
+
"Selecting previously unselected package libc-ares2:amd64.\n",
|
33 |
+
"(Reading database ... 123621 files and directories currently installed.)\n",
|
34 |
+
"Preparing to unpack .../libc-ares2_1.18.1-1ubuntu0.22.04.3_amd64.deb ...\n",
|
35 |
+
"Unpacking libc-ares2:amd64 (1.18.1-1ubuntu0.22.04.3) ...\n",
|
36 |
+
"Selecting previously unselected package libaria2-0:amd64.\n",
|
37 |
+
"Preparing to unpack .../libaria2-0_1.36.0-1_amd64.deb ...\n",
|
38 |
+
"Unpacking libaria2-0:amd64 (1.36.0-1) ...\n",
|
39 |
+
"Selecting previously unselected package aria2.\n",
|
40 |
+
"Preparing to unpack .../aria2_1.36.0-1_amd64.deb ...\n",
|
41 |
+
"Unpacking aria2 (1.36.0-1) ...\n",
|
42 |
+
"Setting up libc-ares2:amd64 (1.18.1-1ubuntu0.22.04.3) ...\n",
|
43 |
+
"Setting up libaria2-0:amd64 (1.36.0-1) ...\n",
|
44 |
+
"Setting up aria2 (1.36.0-1) ...\n",
|
45 |
+
"Processing triggers for man-db (2.10.2-1) ...\n",
|
46 |
+
"Processing triggers for libc-bin (2.35-0ubuntu3.4) ...\n",
|
47 |
+
"/sbin/ldconfig.real: /usr/local/lib/libur_loader.so.0 is not a symbolic link\n",
|
48 |
+
"\n",
|
49 |
+
"/sbin/ldconfig.real: /usr/local/lib/libur_adapter_opencl.so.0 is not a symbolic link\n",
|
50 |
+
"\n",
|
51 |
+
"/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n",
|
52 |
+
"\n",
|
53 |
+
"/sbin/ldconfig.real: /usr/local/lib/libur_adapter_level_zero.so.0 is not a symbolic link\n",
|
54 |
+
"\n",
|
55 |
+
"/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n",
|
56 |
+
"\n",
|
57 |
+
"/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n",
|
58 |
+
"\n",
|
59 |
+
"/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n",
|
60 |
+
"\n",
|
61 |
+
"/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n",
|
62 |
+
"\n",
|
63 |
+
"/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n",
|
64 |
+
"\n",
|
65 |
+
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
66 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m100.3/100.3 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
67 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m266.3/266.3 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
68 |
+
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
69 |
+
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
|
70 |
+
" Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
71 |
+
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
|
72 |
+
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
73 |
+
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
|
74 |
+
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
|
75 |
+
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
76 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.0/4.0 MB\u001b[0m \u001b[31m54.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
77 |
+
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
78 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.9/43.9 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
79 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m191.5/191.5 kB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
80 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m82.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
81 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.1/53.1 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
82 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m125.7/125.7 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
83 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.7/61.7 MB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
84 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.6/41.6 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
85 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m503.1/503.1 kB\u001b[0m \u001b[31m28.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
86 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m825.8/825.8 kB\u001b[0m \u001b[31m41.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
87 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.6/92.6 MB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
88 |
+
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m475.2/475.2 MB\u001b[0m \u001b[31m130.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m"
|
89 |
+
]
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"source": [
|
93 |
+
"import os\n",
|
94 |
+
"import zipfile\n",
|
95 |
+
"import shutil\n",
|
96 |
+
"from subprocess import getoutput\n",
|
97 |
+
"from IPython.utils import capture\n",
|
98 |
+
"import random\n",
|
99 |
+
"import concurrent.futures\n",
|
100 |
+
"from tqdm import tqdm\n",
|
101 |
+
"from PIL import Image\n",
|
102 |
+
"import time\n",
|
103 |
+
"import re\n",
|
104 |
+
"import json\n",
|
105 |
+
"import glob\n",
|
106 |
+
"import gdown\n",
|
107 |
+
"import requests\n",
|
108 |
+
"import subprocess\n",
|
109 |
+
"from urllib.parse import urlparse, unquote\n",
|
110 |
+
"from pathlib import Path\n",
|
111 |
+
"import toml\n",
|
112 |
+
"\n",
|
113 |
+
"#root_dir\n",
|
114 |
+
"root_dir = \"/content\"\n",
|
115 |
+
"deps_dir = os.path.join(root_dir,\"deps\")\n",
|
116 |
+
"repo_dir = os.path.join(root_dir,\"Kohya-Colab\")\n",
|
117 |
+
"training_dir = os.path.join(root_dir,\"Dreamboot-Config\")\n",
|
118 |
+
"pretrained_model = os.path.join(root_dir,\"pretrained_model\")\n",
|
119 |
+
"vae_dir = os.path.join(root_dir,\"vae\")\n",
|
120 |
+
"config_dir = os.path.join(training_dir,\"config\")\n",
|
121 |
+
"\n",
|
122 |
+
"#repo_dir\n",
|
123 |
+
"accelerate_config = os.path.join(repo_dir, \"accelerate_config/config.yaml\")\n",
|
124 |
+
"tools_dir = os.path.join(repo_dir,\"tools\")\n",
|
125 |
+
"finetune_dir = os.path.join(repo_dir,\"finetune\")\n",
|
126 |
+
"\n",
|
127 |
+
"for store in [\"root_dir\", \"deps_dir\", \"repo_dir\", \"training_dir\", \"pretrained_model\", \"vae_dir\", \"accelerate_config\", \"tools_dir\", \"finetune_dir\", \"config_dir\"]:\n",
|
128 |
+
" with capture.capture_output() as cap:\n",
|
129 |
+
" %store {store}\n",
|
130 |
+
" del cap\n",
|
131 |
+
"\n",
|
132 |
+
"repo_url = \"https://github.com/phamhungd/Kohya-Colab\"\n",
|
133 |
+
"bitsandytes_main_py = \"/usr/local/lib/python3.10/dist-packages/bitsandbytes/cuda_setup/main.py\"\n",
|
134 |
+
"branch = \"\"\n",
|
135 |
+
"verbose = False\n",
|
136 |
+
"\n",
|
137 |
+
"def read_file(filename):\n",
|
138 |
+
" with open(filename, \"r\") as f:\n",
|
139 |
+
" contents = f.read()\n",
|
140 |
+
" return contents\n",
|
141 |
+
"\n",
|
142 |
+
"\n",
|
143 |
+
"def write_file(filename, contents):\n",
|
144 |
+
" with open(filename, \"w\") as f:\n",
|
145 |
+
" f.write(contents)\n",
|
146 |
+
"\n",
|
147 |
+
"\n",
|
148 |
+
"def clone_repo(url):\n",
|
149 |
+
" if not os.path.exists(repo_dir):\n",
|
150 |
+
" os.chdir(root_dir)\n",
|
151 |
+
" !git clone {url} {repo_dir}\n",
|
152 |
+
" else:\n",
|
153 |
+
" os.chdir(repo_dir)\n",
|
154 |
+
" !git pull origin {branch} if branch else !git pull\n",
|
155 |
+
"\n",
|
156 |
+
"\n",
|
157 |
+
"def install_dependencies():\n",
|
158 |
+
" s = getoutput('nvidia-smi')\n",
|
159 |
+
"\n",
|
160 |
+
" if 'T4' in s:\n",
|
161 |
+
" !sed -i \"s@cpu@cuda@\" library/model_util.py\n",
|
162 |
+
"\n",
|
163 |
+
" !pip install {'-q' if not verbose else ''} --upgrade -r requirements.txt\n",
|
164 |
+
"\n",
|
165 |
+
" from accelerate.utils import write_basic_config\n",
|
166 |
+
"\n",
|
167 |
+
" if not os.path.exists(accelerate_config):\n",
|
168 |
+
" write_basic_config(save_location=accelerate_config)\n",
|
169 |
+
"\n",
|
170 |
+
"\n",
|
171 |
+
"def remove_bitsandbytes_message(filename):\n",
|
172 |
+
" welcome_message = \"\"\"\n",
|
173 |
+
"def evaluate_cuda_setup():\n",
|
174 |
+
" print('')\n",
|
175 |
+
" print('='*35 + 'BUG REPORT' + '='*35)\n",
|
176 |
+
" print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')\n",
|
177 |
+
" print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')\n",
|
178 |
+
" print('='*80)\"\"\"\n",
|
179 |
+
"\n",
|
180 |
+
" new_welcome_message = \"\"\"\n",
|
181 |
+
"def evaluate_cuda_setup():\n",
|
182 |
+
" import os\n",
|
183 |
+
" if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0':\n",
|
184 |
+
" print('')\n",
|
185 |
+
" print('=' * 35 + 'BUG REPORT' + '=' * 35)\n",
|
186 |
+
" print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')\n",
|
187 |
+
" print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')\n",
|
188 |
+
" print('To hide this message, set the BITSANDBYTES_NOWELCOME variable like so: export BITSANDBYTES_NOWELCOME=1')\n",
|
189 |
+
" print('=' * 80)\"\"\"\n",
|
190 |
+
"\n",
|
191 |
+
" contents = read_file(filename)\n",
|
192 |
+
" new_contents = contents.replace(welcome_message, new_welcome_message)\n",
|
193 |
+
" write_file(filename, new_contents)\n",
|
194 |
+
"\n",
|
195 |
+
"\n",
|
196 |
+
"def main():\n",
|
197 |
+
" os.chdir(root_dir)\n",
|
198 |
+
"\n",
|
199 |
+
" for dir in [\n",
|
200 |
+
" deps_dir,\n",
|
201 |
+
" training_dir,\n",
|
202 |
+
" config_dir,\n",
|
203 |
+
" pretrained_model,\n",
|
204 |
+
" vae_dir\n",
|
205 |
+
" ]:\n",
|
206 |
+
" os.makedirs(dir, exist_ok=True)\n",
|
207 |
+
"\n",
|
208 |
+
" clone_repo(repo_url)\n",
|
209 |
+
"\n",
|
210 |
+
" if branch:\n",
|
211 |
+
" os.chdir(repo_dir)\n",
|
212 |
+
" status = os.system(f\"git checkout {branch}\")\n",
|
213 |
+
" if status != 0:\n",
|
214 |
+
" raise Exception(\"Failed to checkout branch or commit\")\n",
|
215 |
+
"\n",
|
216 |
+
" os.chdir(repo_dir)\n",
|
217 |
+
"\n",
|
218 |
+
" !apt install aria2 {'-qq' if not verbose else ''}\n",
|
219 |
+
"\n",
|
220 |
+
" install_dependencies()\n",
|
221 |
+
" time.sleep(3)\n",
|
222 |
+
"\n",
|
223 |
+
" remove_bitsandbytes_message(bitsandytes_main_py)\n",
|
224 |
+
"\n",
|
225 |
+
" os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\"\n",
|
226 |
+
" os.environ[\"BITSANDBYTES_NOWELCOME\"] = \"1\"\n",
|
227 |
+
" os.environ[\"SAFETENSORS_FAST_GPU\"] = \"1\"\n",
|
228 |
+
"\n",
|
229 |
+
" cuda_path = \"/usr/local/cuda-11.8/targets/x86_64-linux/lib/\"\n",
|
230 |
+
" ld_library_path = os.environ.get(\"LD_LIBRARY_PATH\", \"\")\n",
|
231 |
+
" os.environ[\"LD_LIBRARY_PATH\"] = f\"{ld_library_path}:{cuda_path}\"\n",
|
232 |
+
"\n",
|
233 |
+
"main()\n",
|
234 |
+
"\n",
|
235 |
+
"\n",
|
236 |
+
"print(f\"Your train data directory : {train_data_dir}\")\n",
|
237 |
+
"\n",
|
238 |
+
"os.chdir(finetune_dir)\n",
|
239 |
+
"\n",
|
240 |
+
"config = {\n",
|
241 |
+
" \"_train_data_dir\": train_data_dir, # Manter a referência original\n",
|
242 |
+
" \"batch_size\": 8, # Valor do segundo código\n",
|
243 |
+
" \"repo_id\": \"SmilingWolf/wd-v1-4-convnextv2-tagger-v2\", # Valor do segundo código\n",
|
244 |
+
" \"beam_search\": beam_search, # Manter a referência original\n",
|
245 |
+
" \"min_length\": min_length, # Manter a referência original\n",
|
246 |
+
" \"max_length\": max_length, # Manter a referência original\n",
|
247 |
+
" \"debug\": True, # Do segundo código\n",
|
248 |
+
" \"caption_extension\": \".txt\", # Valor do segundo código\n",
|
249 |
+
" \"max_data_loader_n_workers\": 2, # Valor do segundo código\n",
|
250 |
+
" \"recursive\": True, # Do segundo código\n",
|
251 |
+
" \"remove_underscore\": True, # Do segundo código\n",
|
252 |
+
" \"general_threshold\": Threshold, # Do segundo código\n",
|
253 |
+
" \"character_threshold\": 0.50 # Do segundo código\n",
|
254 |
+
"}\n",
|
255 |
+
"\n",
|
256 |
+
"args = \"\"\n",
|
257 |
+
"for k, v in config.items():\n",
|
258 |
+
" if k.startswith(\"_\"):\n",
|
259 |
+
" args += f'\"{v}\" '\n",
|
260 |
+
" elif isinstance(v, str):\n",
|
261 |
+
" args += f'--{k}=\"{v}\" '\n",
|
262 |
+
" elif isinstance(v, bool) and v:\n",
|
263 |
+
" args += f\"--{k} \"\n",
|
264 |
+
" elif isinstance(v, float) and not isinstance(v, bool):\n",
|
265 |
+
" args += f\"--{k}={v} \"\n",
|
266 |
+
" elif isinstance(v, int) and not isinstance(v, bool):\n",
|
267 |
+
" args += f\"--{k}={v} \"\n",
|
268 |
+
"\n",
|
269 |
+
"# Verificar qual script executar com base em NoAutoCaption\n",
|
270 |
+
"if 'NoAutoCaption' not in locals() or not NoAutoCaption:\n",
|
271 |
+
" final_args = f\"python tag_images_by_wd14_tagger.py {args}\"\n",
|
272 |
+
"else:\n",
|
273 |
+
" final_args = f\"python make_captions.py {args}\"\n",
|
274 |
+
"\n",
|
275 |
+
"os.chdir(finetune_dir)\n",
|
276 |
+
"!{final_args}\n",
|
277 |
+
"\n",
|
278 |
+
"os.chdir(root_dir)\n",
|
279 |
+
"\n",
|
280 |
+
"extension = \".txt\"\n",
|
281 |
+
"custom_tag = CustomCaption\n",
|
282 |
+
"\n",
|
283 |
+
"def read_file(filename):\n",
|
284 |
+
" with open(filename, \"r\") as f:\n",
|
285 |
+
" contents = f.read()\n",
|
286 |
+
" return contents\n",
|
287 |
+
"\n",
|
288 |
+
"def write_file(filename, contents):\n",
|
289 |
+
" with open(filename, \"w\") as f:\n",
|
290 |
+
" f.write(contents)\n",
|
291 |
+
"\n",
|
292 |
+
"def process_tags(filename, custom_tag, append, remove_tag):\n",
|
293 |
+
" contents = read_file(filename)\n",
|
294 |
+
" tags = [tag.strip() for tag in contents.split(',')]\n",
|
295 |
+
" custom_tags = [tag.strip() for tag in custom_tag.split(',')]\n",
|
296 |
+
"\n",
|
297 |
+
" for custom_tag in custom_tags:\n",
|
298 |
+
" custom_tag = custom_tag.replace(\"_\", \" \")\n",
|
299 |
+
" if remove_tag:\n",
|
300 |
+
" while custom_tag in tags:\n",
|
301 |
+
" tags.remove(custom_tag)\n",
|
302 |
+
" else:\n",
|
303 |
+
" if custom_tag not in tags:\n",
|
304 |
+
" if append:\n",
|
305 |
+
" tags.append(custom_tag)\n",
|
306 |
+
" else:\n",
|
307 |
+
" tags.insert(0, custom_tag)\n",
|
308 |
+
"\n",
|
309 |
+
" contents = ', '.join(tags)\n",
|
310 |
+
" write_file(filename, contents)\n",
|
311 |
+
"\n",
|
312 |
+
"def process_directory(train_data_dir, tag, append, remove_tag, recursive):\n",
|
313 |
+
" for filename in os.listdir(train_data_dir):\n",
|
314 |
+
" file_path = os.path.join(train_data_dir, filename)\n",
|
315 |
+
" if os.path.isdir(file_path) and recursive:\n",
|
316 |
+
" process_directory(file_path, tag, append, remove_tag, recursive)\n",
|
317 |
+
" elif filename.endswith(extension):\n",
|
318 |
+
" process_tags(file_path, tag, append, remove_tag)\n",
|
319 |
+
"\n",
|
320 |
+
"if not any(\n",
|
321 |
+
" [filename.endswith(extension) for filename in os.listdir(train_data_dir)]\n",
|
322 |
+
"):\n",
|
323 |
+
" for filename in os.listdir(train_data_dir):\n",
|
324 |
+
" if filename.endswith((\".png\", \".jpg\", \".jpeg\", \".webp\", \".bmp\")):\n",
|
325 |
+
" open(\n",
|
326 |
+
" os.path.join(train_data_dir, filename.split(\".\")[0] + extension),\n",
|
327 |
+
" \"w\",\n",
|
328 |
+
" ).close()\n",
|
329 |
+
"if not NoAutoCaption :\n",
|
330 |
+
" process_directory(train_data_dir, custom_tag, False, False, True)\n",
|
331 |
+
"\n",
|
332 |
+
"#3.Setting\n",
|
333 |
+
"\n",
|
334 |
+
"MODEL_URLS = {\n",
|
335 |
+
" \"GSMaletoPhotoreal_v4\" : \"https://civitai.com/api/download/models/164715\",\n",
|
336 |
+
" \"GSMaletoFusion_v1\" : \"https://civitai.com/api/download/models/138518\",\n",
|
337 |
+
" \"GSMaletoAnime_v1\" : \"https://civitai.com/api/download/models/503605\",\n",
|
338 |
+
"}\n",
|
339 |
+
"MODEL_URL = MODEL_URLS.get(Model, Model)\n",
|
340 |
+
"drive_dir = os.path.join(root_dir, \"drive/MyDrive\")\n",
|
341 |
+
"def get_supported_extensions():\n",
|
342 |
+
" return tuple([\".ckpt\", \".safetensors\", \".pt\", \".pth\"])\n",
|
343 |
+
"\n",
|
344 |
+
"def get_filename(url, quiet=True):\n",
|
345 |
+
" extensions = get_supported_extensions()\n",
|
346 |
+
"\n",
|
347 |
+
" if url.startswith(drive_dir) or url.endswith(tuple(extensions)):\n",
|
348 |
+
" filename = os.path.basename(url)\n",
|
349 |
+
" else:\n",
|
350 |
+
" response = requests.get(url, stream=True)\n",
|
351 |
+
" response.raise_for_status()\n",
|
352 |
+
"\n",
|
353 |
+
" if 'content-disposition' in response.headers:\n",
|
354 |
+
" content_disposition = response.headers['content-disposition']\n",
|
355 |
+
" filename = re.findall('filename=\"?([^\"]+)\"?', content_disposition)[0]\n",
|
356 |
+
" else:\n",
|
357 |
+
" url_path = urlparse(url).path\n",
|
358 |
+
" filename = unquote(os.path.basename(url_path))\n",
|
359 |
+
"\n",
|
360 |
+
" if filename.endswith(tuple(get_supported_extensions())):\n",
|
361 |
+
" return filename\n",
|
362 |
+
" else:\n",
|
363 |
+
" return None\n",
|
364 |
+
"\n",
|
365 |
+
"def get_most_recent_file(directory):\n",
|
366 |
+
" files = glob.glob(os.path.join(directory, \"*\"))\n",
|
367 |
+
" if not files:\n",
|
368 |
+
" return None\n",
|
369 |
+
" most_recent_file = max(files, key=os.path.getmtime)\n",
|
370 |
+
" basename = os.path.basename(most_recent_file)\n",
|
371 |
+
"\n",
|
372 |
+
" return most_recent_file\n",
|
373 |
+
"\n",
|
374 |
+
"def parse_args(config):\n",
|
375 |
+
" args = []\n",
|
376 |
+
"\n",
|
377 |
+
" for k, v in config.items():\n",
|
378 |
+
" if k.startswith(\"_\"):\n",
|
379 |
+
" args.append(f\"{v}\")\n",
|
380 |
+
" elif isinstance(v, str) and v is not None:\n",
|
381 |
+
" args.append(f'--{k}={v}')\n",
|
382 |
+
" elif isinstance(v, bool) and v:\n",
|
383 |
+
" args.append(f\"--{k}\")\n",
|
384 |
+
" elif isinstance(v, float) and not isinstance(v, bool):\n",
|
385 |
+
" args.append(f\"--{k}={v}\")\n",
|
386 |
+
" elif isinstance(v, int) and not isinstance(v, bool):\n",
|
387 |
+
" args.append(f\"--{k}={v}\")\n",
|
388 |
+
"\n",
|
389 |
+
" return args\n",
|
390 |
+
"def aria2_download(dir, filename, url):\n",
|
391 |
+
" aria2_config = {\n",
|
392 |
+
" \"console-log-level\" : \"error\",\n",
|
393 |
+
" \"summary-interval\" : 10,\n",
|
394 |
+
" \"continue\" : True,\n",
|
395 |
+
" \"max-connection-per-server\" : 16,\n",
|
396 |
+
" \"min-split-size\" : \"1M\",\n",
|
397 |
+
" \"split\" : 16,\n",
|
398 |
+
" \"dir\" : dir,\n",
|
399 |
+
" \"out\" : filename,\n",
|
400 |
+
" \"_url\" : url,\n",
|
401 |
+
" }\n",
|
402 |
+
" aria2_args = parse_args(aria2_config)\n",
|
403 |
+
" subprocess.run([\"aria2c\", *aria2_args])\n",
|
404 |
+
"\n",
|
405 |
+
"def gdown_download(url, dst, filepath):\n",
|
406 |
+
" if \"/uc?id/\" in url:\n",
|
407 |
+
" return gdown.download(url, filepath, quiet=False)\n",
|
408 |
+
" elif \"/file/d/\" in url:\n",
|
409 |
+
" return gdown.download(url=url, output=filepath, quiet=False, fuzzy=True)\n",
|
410 |
+
" elif \"/drive/folders/\" in url:\n",
|
411 |
+
" os.chdir(dst)\n",
|
412 |
+
" return gdown.download_folder(url, quiet=True, use_cookies=False)\n",
|
413 |
+
"\n",
|
414 |
+
"def download(url, dst):\n",
|
415 |
+
" print(f\"Starting downloading from {url}\")\n",
|
416 |
+
" filename = get_filename(url)\n",
|
417 |
+
" filepath = os.path.join(dst, filename)\n",
|
418 |
+
"\n",
|
419 |
+
" if \"drive.google.com\" in url:\n",
|
420 |
+
" gdown = gdown_download(url, dst, filepath)\n",
|
421 |
+
" else:\n",
|
422 |
+
" if \"huggingface.co\" in url and \"/blob/\" in url:\n",
|
423 |
+
" url = url.replace(\"/blob/\", \"/resolve/\")\n",
|
424 |
+
" aria2_download(dst, filename, url)\n",
|
425 |
+
"\n",
|
426 |
+
" print(f\"Download finished: {filepath}\")\n",
|
427 |
+
" return filepath\n",
|
428 |
+
"\n",
|
429 |
+
"def get_gpu_name():\n",
|
430 |
+
" try:\n",
|
431 |
+
" return subprocess.check_output(\"nvidia-smi --query-gpu=name --format=csv,noheader,nounits\", shell=True).decode('ascii').strip()\n",
|
432 |
+
" except:\n",
|
433 |
+
" return None\n",
|
434 |
+
"\n",
|
435 |
+
"def main():\n",
|
436 |
+
" global model_path, vae_path\n",
|
437 |
+
" model_path, vae_path = None, None\n",
|
438 |
+
" download_targets = {\n",
|
439 |
+
" \"model\": (MODEL_URL, pretrained_model),\n",
|
440 |
+
" }\n",
|
441 |
+
" for target, (url, dst) in download_targets.items():\n",
|
442 |
+
" if url and not url.startswith(f\"PASTE {target.upper()} URL OR GDRIVE PATH HERE\"):\n",
|
443 |
+
" filepath = download(url, dst)\n",
|
444 |
+
" if target == \"model\":\n",
|
445 |
+
" model_path = filepath\n",
|
446 |
+
" print()\n",
|
447 |
+
" if model_path:\n",
|
448 |
+
" print(f\"Selected model: {model_path}\")\n",
|
449 |
+
"\n",
|
450 |
+
"if Model.startswith(\"/content/drive/\"):\n",
|
451 |
+
" model_path = Model\n",
|
452 |
+
" print(f\"Diffusers model is loaded : {Model}\")\n",
|
453 |
+
"else:\n",
|
454 |
+
" main()\n",
|
455 |
+
"\n",
|
456 |
+
"!aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt -d /content/VAE -o VAE84EMA.vae.pt\n",
|
457 |
+
"vae = \"/content/VAE/VAE84EMA.vae.pt\"\n",
|
458 |
+
"\n",
|
459 |
+
"#Dataset Config\n",
|
460 |
+
"\n",
|
461 |
+
"activation_word = \"GSGI\"\n",
|
462 |
+
"caption_extension = \".txt\"\n",
|
463 |
+
"token_to_captions = False\n",
|
464 |
+
"dataset_repeats = Repeats\n",
|
465 |
+
"keep_tokens = 0\n",
|
466 |
+
"flip_aug = False\n",
|
467 |
+
"\n",
|
468 |
+
"if ',' in activation_word or ' ' in activation_word:\n",
|
469 |
+
" words = activation_word.replace(',', ' ').split()\n",
|
470 |
+
" class_token = words[-1]\n",
|
471 |
+
"\n",
|
472 |
+
"\n",
|
473 |
+
"def read_file(filename):\n",
|
474 |
+
" with open(filename, \"r\") as f:\n",
|
475 |
+
" contents = f.read()\n",
|
476 |
+
" return contents\n",
|
477 |
+
"\n",
|
478 |
+
"\n",
|
479 |
+
"def write_file(filename, contents):\n",
|
480 |
+
" with open(filename, \"w\") as f:\n",
|
481 |
+
" f.write(contents)\n",
|
482 |
+
"\n",
|
483 |
+
"\n",
|
484 |
+
"def get_supported_images(folder):\n",
|
485 |
+
" supported_extensions = (\".png\", \".jpg\", \".jpeg\", \".webp\", \".bmp\")\n",
|
486 |
+
" return [file for ext in supported_extensions for file in glob.glob(f\"{folder}/*{ext}\")]\n",
|
487 |
+
"\n",
|
488 |
+
"\n",
|
489 |
+
"def get_subfolders_with_supported_images(folder):\n",
|
490 |
+
" subfolders = [os.path.join(folder, subfolder) for subfolder in os.listdir(folder) if os.path.isdir(os.path.join(folder, subfolder))]\n",
|
491 |
+
" return [subfolder for subfolder in subfolders if len(get_supported_images(subfolder)) > 0]\n",
|
492 |
+
"\n",
|
493 |
+
"\n",
|
494 |
+
"def process_tags(filename, custom_tag, remove_tag):\n",
|
495 |
+
" contents = read_file(filename)\n",
|
496 |
+
" tags = [tag.strip() for tag in contents.split(',')]\n",
|
497 |
+
" custom_tags = [tag.strip() for tag in custom_tag.split(',')]\n",
|
498 |
+
"\n",
|
499 |
+
" for custom_tag in custom_tags:\n",
|
500 |
+
" custom_tag = custom_tag.replace(\"_\", \" \")\n",
|
501 |
+
" # if remove_tag:\n",
|
502 |
+
" # while custom_tag in tags:\n",
|
503 |
+
" # tags.remove(custom_tag)\n",
|
504 |
+
" # else:\n",
|
505 |
+
" if custom_tag not in tags:\n",
|
506 |
+
" tags.insert(0, custom_tag)\n",
|
507 |
+
"\n",
|
508 |
+
" contents = ', '.join(tags)\n",
|
509 |
+
" write_file(filename, contents)\n",
|
510 |
+
"\n",
|
511 |
+
"\n",
|
512 |
+
"def process_folder_recursively(folder):\n",
|
513 |
+
" for root, _, files in os.walk(folder):\n",
|
514 |
+
" for file in files:\n",
|
515 |
+
" if file.endswith(caption_extension):\n",
|
516 |
+
" file_path = os.path.join(root, file)\n",
|
517 |
+
" extracted_class_token = get_class_token_from_folder_name(root, folder)\n",
|
518 |
+
" train_supported_images = get_supported_images(train_data_dir)\n",
|
519 |
+
" tag = extracted_class_token if extracted_class_token else activation_word if train_supported_images else \"\"\n",
|
520 |
+
" if not tag == \"\":\n",
|
521 |
+
" process_tags(file_path, tag, remove_tag=(not token_to_captions))\n",
|
522 |
+
"\n",
|
523 |
+
"\n",
|
524 |
+
"def get_num_repeats(folder):\n",
|
525 |
+
" folder_name = os.path.basename(folder)\n",
|
526 |
+
" try:\n",
|
527 |
+
" repeats, _ = folder_name.split('_', 1)\n",
|
528 |
+
" num_repeats = int(repeats)\n",
|
529 |
+
" except ValueError:\n",
|
530 |
+
" num_repeats = dataset_repeats\n",
|
531 |
+
"\n",
|
532 |
+
" return num_repeats\n",
|
533 |
+
"\n",
|
534 |
+
"\n",
|
535 |
+
"def get_class_token_from_folder_name(folder, parent_folder):\n",
|
536 |
+
" if folder == parent_folder:\n",
|
537 |
+
" return class_token\n",
|
538 |
+
"\n",
|
539 |
+
" folder_name = os.path.basename(folder)\n",
|
540 |
+
" try:\n",
|
541 |
+
" _, concept = folder_name.split('_', 1)\n",
|
542 |
+
" return concept\n",
|
543 |
+
" except ValueError:\n",
|
544 |
+
" return \"\"\n",
|
545 |
+
"\n",
|
546 |
+
"train_supported_images = get_supported_images(train_data_dir)\n",
|
547 |
+
"train_subfolders = get_subfolders_with_supported_images(train_data_dir)\n",
|
548 |
+
"\n",
|
549 |
+
"subsets = []\n",
|
550 |
+
"config = {\n",
|
551 |
+
" \"general\": {\n",
|
552 |
+
" \"enable_bucket\": True,\n",
|
553 |
+
" \"caption_extension\": caption_extension,\n",
|
554 |
+
" \"shuffle_caption\": True,\n",
|
555 |
+
" \"keep_tokens\": keep_tokens,\n",
|
556 |
+
" \"bucket_reso_steps\": 64,\n",
|
557 |
+
" \"bucket_no_upscale\": False,\n",
|
558 |
+
" },\n",
|
559 |
+
" \"datasets\": [\n",
|
560 |
+
" {\n",
|
561 |
+
" \"resolution\": resolution,\n",
|
562 |
+
" \"min_bucket_reso\": 320 if resolution > 640 else 256,\n",
|
563 |
+
" \"max_bucket_reso\": 1280 if resolution > 640 else 1024,\n",
|
564 |
+
" \"caption_dropout_rate\": 0,\n",
|
565 |
+
" \"caption_tag_dropout_rate\": 0,\n",
|
566 |
+
" \"caption_dropout_every_n_epochs\": 0,\n",
|
567 |
+
" \"flip_aug\": flip_aug,\n",
|
568 |
+
" \"color_aug\": False,\n",
|
569 |
+
" \"face_crop_aug_range\": None,\n",
|
570 |
+
" \"subsets\": subsets,\n",
|
571 |
+
" }\n",
|
572 |
+
" ],\n",
|
573 |
+
"}\n",
|
574 |
+
"\n",
|
575 |
+
"if token_to_captions and keep_tokens < 2:\n",
|
576 |
+
" keep_tokens = 1\n",
|
577 |
+
"\n",
|
578 |
+
"process_folder_recursively(train_data_dir)\n",
|
579 |
+
"\n",
|
580 |
+
"if train_supported_images:\n",
|
581 |
+
" subsets.append({\n",
|
582 |
+
" \"image_dir\": train_data_dir,\n",
|
583 |
+
" \"class_tokens\": activation_word,\n",
|
584 |
+
" \"num_repeats\": dataset_repeats,\n",
|
585 |
+
" })\n",
|
586 |
+
"\n",
|
587 |
+
"for subfolder in train_subfolders:\n",
|
588 |
+
" num_repeats = get_num_repeats(subfolder)\n",
|
589 |
+
" extracted_class_token = get_class_token_from_folder_name(subfolder, train_data_dir)\n",
|
590 |
+
" subsets.append({\n",
|
591 |
+
" \"image_dir\": subfolder,\n",
|
592 |
+
" \"class_tokens\": extracted_class_token if extracted_class_token else None,\n",
|
593 |
+
" \"num_repeats\": num_repeats,\n",
|
594 |
+
" })\n",
|
595 |
+
"\n",
|
596 |
+
"for subset in subsets:\n",
|
597 |
+
" if not glob.glob(f\"{subset['image_dir']}/*.txt\"):\n",
|
598 |
+
" subset[\"class_tokens\"] = activation_word\n",
|
599 |
+
"\n",
|
600 |
+
"dataset_config = os.path.join(config_dir, \"dataset_config.toml\")\n",
|
601 |
+
"\n",
|
602 |
+
"for key in config:\n",
|
603 |
+
" if isinstance(config[key], dict):\n",
|
604 |
+
" for sub_key in config[key]:\n",
|
605 |
+
" if config[key][sub_key] == \"\":\n",
|
606 |
+
" config[key][sub_key] = None\n",
|
607 |
+
" elif config[key] == \"\":\n",
|
608 |
+
" config[key] = None\n",
|
609 |
+
"\n",
|
610 |
+
"config_str = toml.dumps(config)\n",
|
611 |
+
"\n",
|
612 |
+
"with open(dataset_config, \"w\") as f:\n",
|
613 |
+
" f.write(config_str)\n",
|
614 |
+
"\n",
|
615 |
+
"print(config_str)\n",
|
616 |
+
"\n",
|
617 |
+
"#Config\n",
|
618 |
+
"optimizer_args = False\n",
|
619 |
+
"conv_dim = 4\n",
|
620 |
+
"conv_alpha = 1\n",
|
621 |
+
"\n",
|
622 |
+
"network_module = \"networks.lora\"\n",
|
623 |
+
"network_args = \"\"\n",
|
624 |
+
"\n",
|
625 |
+
"config = {\n",
|
626 |
+
" \"model_arguments\": {\n",
|
627 |
+
" \"v2\": False,\n",
|
628 |
+
" \"v_parameterization\": False,\n",
|
629 |
+
" \"pretrained_model_name_or_path\": model_path,\n",
|
630 |
+
" \"vae\": vae,\n",
|
631 |
+
" },\n",
|
632 |
+
" \"additional_network_arguments\": {\n",
|
633 |
+
" \"no_metadata\": False,\n",
|
634 |
+
" \"unet_lr\": float(unet_lr),\n",
|
635 |
+
" \"text_encoder_lr\": float(text_encoder_lr),\n",
|
636 |
+
" \"network_module\": network_module,\n",
|
637 |
+
" \"network_dim\": 64,\n",
|
638 |
+
" \"network_alpha\": 48,\n",
|
639 |
+
" \"training_comment\": \"GSGI Trainer\",\n",
|
640 |
+
" },\n",
|
641 |
+
" \"optimizer_arguments\": {\n",
|
642 |
+
" \"optimizer_type\": \"AdamW8bit\",\n",
|
643 |
+
" \"optimizer_args\": eval(optimizer_args) if optimizer_args else None,\n",
|
644 |
+
" \"learning_rate\": unet_lr,\n",
|
645 |
+
" \"max_grad_norm\": 1.0,\n",
|
646 |
+
" \"lr_scheduler\": \"cosine_with_restarts\",\n",
|
647 |
+
" \"lr_scheduler_num_cycles\": 4,\n",
|
648 |
+
" },\n",
|
649 |
+
" \"dataset_arguments\": {\n",
|
650 |
+
" \"cache_latents\": True,\n",
|
651 |
+
" \"debug_dataset\": False,\n",
|
652 |
+
" \"vae_batch_size\": Batch_size,\n",
|
653 |
+
" },\n",
|
654 |
+
" \"training_arguments\": {\n",
|
655 |
+
" \"output_dir\": output_dir,\n",
|
656 |
+
" \"output_name\": Loraname,\n",
|
657 |
+
" \"save_precision\": \"fp16\",\n",
|
658 |
+
" \"save_every_n_epochs\": save_n_epochs_type_value,\n",
|
659 |
+
" \"train_batch_size\": Batch_size,\n",
|
660 |
+
" \"max_token_length\": 225,\n",
|
661 |
+
" \"mem_eff_attn\": False,\n",
|
662 |
+
" \"xformers\": True,\n",
|
663 |
+
" \"max_train_epochs\": num_epochs,\n",
|
664 |
+
" \"max_data_loader_n_workers\": 8,\n",
|
665 |
+
" \"persistent_data_loader_workers\": True,\n",
|
666 |
+
" \"gradient_checkpointing\": False,\n",
|
667 |
+
" \"gradient_accumulation_steps\": 1,\n",
|
668 |
+
" \"mixed_precision\": \"fp16\",\n",
|
669 |
+
" \"clip_skip\": 1,\n",
|
670 |
+
" \"logging_dir\": \"/content/Dreamboot-Config/logs\",\n",
|
671 |
+
" \"log_prefix\": Loraname,\n",
|
672 |
+
" \"lowram\": True,\n",
|
673 |
+
" \"training_comment\" : \"train by GSGI Trainer\",\n",
|
674 |
+
" },\n",
|
675 |
+
" \"sample_prompt_arguments\": {\n",
|
676 |
+
" \"sample_every_n_steps\": 200,\n",
|
677 |
+
" \"sample_every_n_epochs\": 1,\n",
|
678 |
+
" \"sample_sampler\": \"euler\",\n",
|
679 |
+
" },\n",
|
680 |
+
" \"dreambooth_arguments\": {\n",
|
681 |
+
" \"prior_loss_weight\": 1,\n",
|
682 |
+
" },\n",
|
683 |
+
" \"saving_arguments\": {\n",
|
684 |
+
" \"save_model_as\": \"safetensors\",\n",
|
685 |
+
" },\n",
|
686 |
+
"}\n",
|
687 |
+
"SamplePrompt = f\"{Loraname},front view, masterpiece,best quality\"\n",
|
688 |
+
"sample_str = f\"\"\"\n",
|
689 |
+
" {SamplePrompt}\\\n",
|
690 |
+
" --n lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry \\\n",
|
691 |
+
" --w 512 \\\n",
|
692 |
+
" --h 768 \\\n",
|
693 |
+
" --l 7 \\\n",
|
694 |
+
" --s 30\n",
|
695 |
+
"\"\"\"\n",
|
696 |
+
"config_path = os.path.join(config_dir, \"config_file.toml\")\n",
|
697 |
+
"prompt_path = os.path.join(config_dir, \"sample_prompt.txt\")\n",
|
698 |
+
"\n",
|
699 |
+
"for key in config:\n",
|
700 |
+
" if isinstance(config[key], dict):\n",
|
701 |
+
" for sub_key in config[key]:\n",
|
702 |
+
" if config[key][sub_key] == \"\":\n",
|
703 |
+
" config[key][sub_key] = None\n",
|
704 |
+
" elif config[key] == \"\":\n",
|
705 |
+
" config[key] = None\n",
|
706 |
+
"\n",
|
707 |
+
"config_str = toml.dumps(config)\n",
|
708 |
+
"\n",
|
709 |
+
"def write_file(filename, contents):\n",
|
710 |
+
" with open(filename, \"w\") as f:\n",
|
711 |
+
" f.write(contents)\n",
|
712 |
+
"\n",
|
713 |
+
"write_file(config_path, config_str)\n",
|
714 |
+
"write_file(prompt_path, sample_str)\n",
|
715 |
+
"\n",
|
716 |
+
"print(config_str)\n",
|
717 |
+
"\n",
|
718 |
+
"os.chdir(repo_dir)\n",
|
719 |
+
"\n",
|
720 |
+
"\n",
|
721 |
+
"train_file = \"train_network.py\"\n",
|
722 |
+
"ConfigFolder = \"/content/Dreamboot-Config/config\"\n",
|
723 |
+
"sample_prompt = f\"{ConfigFolder}/sample_prompt.txt\"\n",
|
724 |
+
"config_file = f\"{ConfigFolder}/config_file.toml\"\n",
|
725 |
+
"dataset_config = f\"{ConfigFolder}/dataset_config.toml\"\n",
|
726 |
+
"accelerate_conf = {\n",
|
727 |
+
" \"config_file\" : accelerate_config,\n",
|
728 |
+
" \"num_cpu_threads_per_process\" : 1,\n",
|
729 |
+
"}\n",
|
730 |
+
"\n",
|
731 |
+
"train_conf = {\n",
|
732 |
+
" \"sample_prompts\" : sample_prompt,\n",
|
733 |
+
" \"dataset_config\" : dataset_config,\n",
|
734 |
+
" \"config_file\" : config_file\n",
|
735 |
+
"}\n",
|
736 |
+
"\n",
|
737 |
+
"def train(config):\n",
|
738 |
+
" args = \"\"\n",
|
739 |
+
" for k, v in config.items():\n",
|
740 |
+
" if k.startswith(\"_\"):\n",
|
741 |
+
" args += f'\"{v}\" '\n",
|
742 |
+
" elif isinstance(v, str):\n",
|
743 |
+
" args += f'--{k}=\"{v}\" '\n",
|
744 |
+
" elif isinstance(v, bool) and v:\n",
|
745 |
+
" args += f\"--{k} \"\n",
|
746 |
+
" elif isinstance(v, float) and not isinstance(v, bool):\n",
|
747 |
+
" args += f\"--{k}={v} \"\n",
|
748 |
+
" elif isinstance(v, int) and not isinstance(v, bool):\n",
|
749 |
+
" args += f\"--{k}={v} \"\n",
|
750 |
+
"\n",
|
751 |
+
" return args\n",
|
752 |
+
"\n",
|
753 |
+
"accelerate_args = train(accelerate_conf)\n",
|
754 |
+
"train_args = train(train_conf)\n",
|
755 |
+
"final_args = f\"accelerate launch {accelerate_args} {train_file} {train_args}\"\n"
|
756 |
+
]
|
757 |
+
}
|
758 |
+
],
|
759 |
+
"metadata": {
|
760 |
+
"language_info": {
|
761 |
+
"name": "python"
|
762 |
+
},
|
763 |
+
"colab": {
|
764 |
+
"provenance": []
|
765 |
+
},
|
766 |
+
"kernelspec": {
|
767 |
+
"name": "python3",
|
768 |
+
"display_name": "Python 3"
|
769 |
+
}
|
770 |
+
},
|
771 |
+
"nbformat": 4,
|
772 |
+
"nbformat_minor": 0
|
773 |
+
}
|