Update PxCorpus.py
Browse files- PxCorpus.py +37 -2
PxCorpus.py
CHANGED
@@ -36,8 +36,35 @@ of 55 participants (38% non-experts, 25% doctors, 36% medical practitioners), ma
|
|
36 |
|
37 |
_URL = "https://zenodo.org/record/6524162/files/pxslu.zip?download=1"
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
class PxCorpus(datasets.GeneratorBasedBuilder):
|
40 |
|
|
|
|
|
41 |
BUILDER_CONFIGS = [
|
42 |
datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"PxCorpus data"),
|
43 |
]
|
@@ -59,6 +86,11 @@ class PxCorpus(datasets.GeneratorBasedBuilder):
|
|
59 |
names=['O', 'B-A', 'B-cma_event', 'B-d_dos_form', 'B-d_dos_form_ext', 'B-d_dos_up', 'B-d_dos_val', 'B-dos_cond', 'B-dos_uf', 'B-dos_val', 'B-drug', 'B-dur_ut', 'B-dur_val', 'B-fasting', 'B-freq_days', 'B-freq_int_v1', 'B-freq_int_v1_ut', 'B-freq_int_v2', 'B-freq_int_v2_ut', 'B-freq_startday', 'B-freq_ut', 'B-freq_val', 'B-inn', 'B-max_unit_uf', 'B-max_unit_ut', 'B-max_unit_val', 'B-min_gap_ut', 'B-min_gap_val', 'B-qsp_ut', 'B-qsp_val', 'B-re_ut', 'B-re_val', 'B-rhythm_hour', 'B-rhythm_perday', 'B-rhythm_rec_ut', 'B-rhythm_rec_val', 'B-rhythm_tdte', 'B-roa', 'I-cma_event', 'I-d_dos_form', 'I-d_dos_form_ext', 'I-d_dos_up', 'I-d_dos_val', 'I-dos_cond', 'I-dos_uf', 'I-dos_val', 'I-drug', 'I-fasting', 'I-freq_startday', 'I-inn', 'I-rhythm_tdte', 'I-roa'],
|
60 |
),
|
61 |
),
|
|
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
)
|
64 |
|
@@ -109,6 +141,7 @@ class PxCorpus(datasets.GeneratorBasedBuilder):
|
|
109 |
|
110 |
tokens = []
|
111 |
ner_tags = []
|
|
|
112 |
|
113 |
for pair in document.split("\n"):
|
114 |
|
@@ -118,8 +151,9 @@ class PxCorpus(datasets.GeneratorBasedBuilder):
|
|
118 |
text, label = pair.split("\t")
|
119 |
tokens.append(text)
|
120 |
ner_tags.append(label)
|
|
|
121 |
|
122 |
-
return tokens, ner_tags
|
123 |
|
124 |
def _generate_examples(self, filepath_1, filepath_2, filepath_3, split):
|
125 |
|
@@ -143,7 +177,7 @@ class PxCorpus(datasets.GeneratorBasedBuilder):
|
|
143 |
text = seq_in[idx]
|
144 |
label = seq_label[idx]
|
145 |
|
146 |
-
tokens, ner_tags = self.getTokenTags(docs[idx])
|
147 |
|
148 |
if len(text) <= 0 or len(label) <= 0:
|
149 |
continue
|
@@ -154,6 +188,7 @@ class PxCorpus(datasets.GeneratorBasedBuilder):
|
|
154 |
"label": label,
|
155 |
"tokens": tokens,
|
156 |
"ner_tags": ner_tags,
|
|
|
157 |
})
|
158 |
|
159 |
key += 1
|
|
|
36 |
|
37 |
_URL = "https://zenodo.org/record/6524162/files/pxslu.zip?download=1"
|
38 |
|
39 |
+
class StringIndex:
|
40 |
+
|
41 |
+
def __init__(self, vocab):
|
42 |
+
|
43 |
+
self.vocab_struct = {}
|
44 |
+
|
45 |
+
print("Start building the index!")
|
46 |
+
for term in vocab:
|
47 |
+
|
48 |
+
if len(term) == 0:
|
49 |
+
continue
|
50 |
+
|
51 |
+
# Index terms by their first letter and length
|
52 |
+
key = (term[0], len(term))
|
53 |
+
|
54 |
+
if key not in self.vocab_struct:
|
55 |
+
self.vocab_struct[key] = []
|
56 |
+
|
57 |
+
self.vocab_struct[key].append(term)
|
58 |
+
|
59 |
+
print("Finished building the index!")
|
60 |
+
|
61 |
+
def find(self, term):
|
62 |
+
return term in self.vocab_struct[(term[0], len(term))]
|
63 |
+
|
64 |
class PxCorpus(datasets.GeneratorBasedBuilder):
|
65 |
|
66 |
+
VOCAB = StringIndex(vocab=open("./vocabulary_nachos_lowercased.txt","r").read().split("\n"))
|
67 |
+
|
68 |
BUILDER_CONFIGS = [
|
69 |
datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"PxCorpus data"),
|
70 |
]
|
|
|
86 |
names=['O', 'B-A', 'B-cma_event', 'B-d_dos_form', 'B-d_dos_form_ext', 'B-d_dos_up', 'B-d_dos_val', 'B-dos_cond', 'B-dos_uf', 'B-dos_val', 'B-drug', 'B-dur_ut', 'B-dur_val', 'B-fasting', 'B-freq_days', 'B-freq_int_v1', 'B-freq_int_v1_ut', 'B-freq_int_v2', 'B-freq_int_v2_ut', 'B-freq_startday', 'B-freq_ut', 'B-freq_val', 'B-inn', 'B-max_unit_uf', 'B-max_unit_ut', 'B-max_unit_val', 'B-min_gap_ut', 'B-min_gap_val', 'B-qsp_ut', 'B-qsp_val', 'B-re_ut', 'B-re_val', 'B-rhythm_hour', 'B-rhythm_perday', 'B-rhythm_rec_ut', 'B-rhythm_rec_val', 'B-rhythm_tdte', 'B-roa', 'I-cma_event', 'I-d_dos_form', 'I-d_dos_form_ext', 'I-d_dos_up', 'I-d_dos_val', 'I-dos_cond', 'I-dos_uf', 'I-dos_val', 'I-drug', 'I-fasting', 'I-freq_startday', 'I-inn', 'I-rhythm_tdte', 'I-roa'],
|
87 |
),
|
88 |
),
|
89 |
+
"is_oov": datasets.Sequence(
|
90 |
+
datasets.features.ClassLabel(
|
91 |
+
names=['is_not_oov', 'is_oov'],
|
92 |
+
),
|
93 |
+
),
|
94 |
}
|
95 |
)
|
96 |
|
|
|
141 |
|
142 |
tokens = []
|
143 |
ner_tags = []
|
144 |
+
is_oov = []
|
145 |
|
146 |
for pair in document.split("\n"):
|
147 |
|
|
|
151 |
text, label = pair.split("\t")
|
152 |
tokens.append(text)
|
153 |
ner_tags.append(label)
|
154 |
+
is_oov.append(VOCAB.find(text))
|
155 |
|
156 |
+
return tokens, ner_tags, is_oov
|
157 |
|
158 |
def _generate_examples(self, filepath_1, filepath_2, filepath_3, split):
|
159 |
|
|
|
177 |
text = seq_in[idx]
|
178 |
label = seq_label[idx]
|
179 |
|
180 |
+
tokens, ner_tags, is_oov = self.getTokenTags(docs[idx])
|
181 |
|
182 |
if len(text) <= 0 or len(label) <= 0:
|
183 |
continue
|
|
|
188 |
"label": label,
|
189 |
"tokens": tokens,
|
190 |
"ner_tags": ner_tags,
|
191 |
+
"is_oov": is_oov,
|
192 |
})
|
193 |
|
194 |
key += 1
|