Nandan Thakur commited on
Commit
152b8ec
·
1 Parent(s): 543c547

added initial script for loading queries and qrels

Browse files
Files changed (1) hide show
  1. beir.py +159 -0
beir.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import csv
3
+ import os
4
+ import datasets
5
+
6
+ logger = datasets.logging.get_logger(__name__)
7
+
8
+
9
+ _DESCRIPTION = "BEIR Benchmark"
10
+ _DATASETS = ["fiqa", "trec-covid", ""]
11
+
12
+ URL = ""
13
+ _URLs = {
14
+ dataset: {
15
+ "queries": URL + f"{dataset}/queries.jsonl",
16
+ "qrels": {
17
+ "train": URL + f"{dataset}/qrels/train.tsv",
18
+ "dev": URL + f"{dataset}/qrels/dev.tsv",
19
+ "test": URL + f"{dataset}/qrels/test.tsv"
20
+ }} for dataset in _DATASETS}
21
+
22
+
23
+ class BEIR(datasets.GeneratorBasedBuilder):
24
+ """BEIR BenchmarkDataset."""
25
+
26
+ BUILDER_CONFIGS = [
27
+ datasets.BuilderConfig(
28
+ name=dataset,
29
+ description=f"This is the {dataset} dataset in BEIR Benchmark.",
30
+ ) for dataset in _DATASETS
31
+ ]
32
+
33
+
34
+ def _info(self):
35
+ return datasets.DatasetInfo(
36
+ description=_DESCRIPTION,
37
+ features=datasets.Features({
38
+ "query": datasets.Value("string"),
39
+ "relevant": [{
40
+ "_id": datasets.Value("string"),
41
+ "score": datasets.Value("int32"),
42
+ }],
43
+ }),
44
+ supervised_keys=None,
45
+ )
46
+
47
+ def _split_generators(self, dl_manager):
48
+ """Returns SplitGenerators."""
49
+
50
+ my_urls = _URLs[self.config.name]
51
+
52
+ # All train, dev and test splits available for these datasets
53
+ if self.config.name in ["msmarco", "nfcorpus", "hotpotqa", "fiqa", "fever"]:
54
+ data_dir = dl_manager.download_and_extract(my_urls)
55
+ return [
56
+ datasets.SplitGenerator(
57
+ name=datasets.Split.TRAIN,
58
+ # These kwargs will be passed to _generate_examples
59
+ gen_kwargs={"query_path": data_dir["queries"],
60
+ "qrels_path": data_dir["qrels"]["train"]}
61
+ ),
62
+ datasets.SplitGenerator(
63
+ name="dev",
64
+ # These kwargs will be passed to _generate_examples
65
+ gen_kwargs={"query_path": data_dir["queries"],
66
+ "qrels_path": data_dir["qrels"]["dev"]}
67
+ ),
68
+ datasets.SplitGenerator(
69
+ name=datasets.Split.TEST,
70
+ # These kwargs will be passed to _generate_examples
71
+ gen_kwargs={"query_path": data_dir["queries"],
72
+ "qrels_path": data_dir["qrels"]["test"]}
73
+ ),
74
+ ]
75
+
76
+ # Only train and test splits available for these datasets
77
+ elif self.config.name in ["nq", "scifact"]:
78
+ my_urls["qrels"].pop("dev", None)
79
+ data_dir = dl_manager.download_and_extract(my_urls)
80
+
81
+ return [
82
+ datasets.SplitGenerator(
83
+ name=datasets.Split.TRAIN,
84
+ # These kwargs will be passed to _generate_examples
85
+ gen_kwargs={"query_path": data_dir["queries"],
86
+ "qrels_path": data_dir["qrels"]["train"]}
87
+ ),
88
+ datasets.SplitGenerator(
89
+ name=datasets.Split.TEST,
90
+ # These kwargs will be passed to _generate_examples
91
+ gen_kwargs={"query_path": data_dir["queries"],
92
+ "qrels_path": data_dir["qrels"]["test"]}
93
+ ),
94
+ ]
95
+
96
+ # Only dev and test splits available for these datasets
97
+ elif self.config.name in ["dbpedia", "quora"]:
98
+ my_urls["qrels"].pop("train", None)
99
+ data_dir = dl_manager.download_and_extract(my_urls)
100
+ return [
101
+ datasets.SplitGenerator(
102
+ name="dev",
103
+ # These kwargs will be passed to _generate_examples
104
+ gen_kwargs={"query_path": data_dir["queries"],
105
+ "qrels_path": data_dir["qrels"]["dev"]}
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ # These kwargs will be passed to _generate_examples
110
+ gen_kwargs={"query_path": data_dir["queries"],
111
+ "qrels_path": data_dir["qrels"]["test"]}
112
+ ),
113
+ ]
114
+
115
+ # Only test split available for these datasets
116
+ else:
117
+ for split in ["train", "dev"]:
118
+ my_urls["qrels"].pop(split, None)
119
+ data_dir = dl_manager.download_and_extract(my_urls)
120
+ return [
121
+ datasets.SplitGenerator(
122
+ name=datasets.Split.TEST,
123
+ # These kwargs will be passed to _generate_examples
124
+ gen_kwargs={"query_path": data_dir["queries"],
125
+ "qrels_path": data_dir["qrels"]["test"]}
126
+ ),
127
+ ]
128
+
129
+
130
+ def _generate_examples(self, query_path, qrels_path):
131
+ """Yields examples."""
132
+
133
+ queries, qrels = {}, {}
134
+
135
+ with open(query_path, encoding="utf-8") as fIn:
136
+ text = fIn.readlines()
137
+
138
+ for line in text:
139
+ line = json.loads(line)
140
+ queries[line.get("_id")] = line.get("text", "")
141
+
142
+ reader = csv.reader(open(qrels_path, encoding="utf-8"),
143
+ delimiter="\t", quoting=csv.QUOTE_MINIMAL)
144
+
145
+ next(reader)
146
+
147
+ for id, row in enumerate(reader):
148
+ query_id, corpus_id, score = row[0], row[1], int(row[2])
149
+ if query_id not in qrels:
150
+ qrels[query_id] = {corpus_id: score}
151
+ else:
152
+ qrels[query_id][corpus_id] = score
153
+
154
+ for i, query_id in enumerate(qrels):
155
+ yield i, {
156
+ "query": queries[query_id],
157
+ "relevant": [{"_id": doc_id, "score": score
158
+ } for doc_id, score in qrels[query_id].items()]
159
+ }