Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
entity-linking-classification
Languages:
English
Size:
< 1K
License:
Update SemEval2018Task7.py
Browse files- SemEval2018Task7.py +25 -13
SemEval2018Task7.py
CHANGED
@@ -76,7 +76,7 @@ _LICENSE = ""
|
|
76 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
77 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
78 |
_URLS = {
|
79 |
-
"
|
80 |
"train": {
|
81 |
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.relations.txt",
|
82 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.text.xml",
|
@@ -86,7 +86,7 @@ _URLS = {
|
|
86 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.text.xml",
|
87 |
},
|
88 |
},
|
89 |
-
"
|
90 |
"train": {
|
91 |
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.relations.txt",
|
92 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.text.xml",
|
@@ -95,8 +95,8 @@ _URLS = {
|
|
95 |
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.relations.txt",
|
96 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.text.xml",
|
97 |
},
|
98 |
-
}
|
99 |
-
|
100 |
}
|
101 |
|
102 |
|
@@ -162,15 +162,16 @@ class Semeval2018Task7(datasets.GeneratorBasedBuilder):
|
|
162 |
VERSION = datasets.Version("1.1.0")
|
163 |
|
164 |
BUILDER_CONFIGS = [
|
165 |
-
datasets.BuilderConfig(name="
|
166 |
description="Relation classification on clean data"),
|
167 |
-
datasets.BuilderConfig(name="
|
168 |
description="Relation classification on noisy data"),
|
|
|
169 |
]
|
170 |
-
DEFAULT_CONFIG_NAME = "
|
171 |
|
172 |
def _info(self):
|
173 |
-
class_labels = ["USAGE", "RESULT", "MODEL-FEATURE", "PART_WHOLE", "TOPIC", "COMPARE"]
|
174 |
features = datasets.Features(
|
175 |
{
|
176 |
"id": datasets.Value("string"),
|
@@ -218,22 +219,33 @@ class Semeval2018Task7(datasets.GeneratorBasedBuilder):
|
|
218 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
219 |
urls = _URLS[self.config.name]
|
220 |
downloaded_files = dl_manager.download(urls)
|
221 |
-
|
222 |
|
223 |
return [
|
224 |
datasets.SplitGenerator(
|
225 |
name=datasets.Split.TRAIN,
|
226 |
# These kwargs will be passed to _generate_examples
|
227 |
gen_kwargs={
|
228 |
-
"relation_filepath": downloaded_files[
|
229 |
-
"text_filepath": downloaded_files[
|
|
|
230 |
}
|
231 |
|
232 |
-
)
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
|
|
|
|
235 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
236 |
def _generate_examples(self, relation_filepath, text_filepath):
|
|
|
237 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
238 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
239 |
with open(relation_filepath, encoding="utf-8") as f:
|
|
|
76 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
77 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
78 |
_URLS = {
|
79 |
+
"Subtask_1_1": {
|
80 |
"train": {
|
81 |
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.relations.txt",
|
82 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.text.xml",
|
|
|
86 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.text.xml",
|
87 |
},
|
88 |
},
|
89 |
+
"Subtask_1_2": {
|
90 |
"train": {
|
91 |
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.relations.txt",
|
92 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.text.xml",
|
|
|
95 |
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.relations.txt",
|
96 |
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.text.xml",
|
97 |
},
|
98 |
+
},
|
99 |
+
|
100 |
}
|
101 |
|
102 |
|
|
|
162 |
VERSION = datasets.Version("1.1.0")
|
163 |
|
164 |
BUILDER_CONFIGS = [
|
165 |
+
datasets.BuilderConfig(name="Subtask_1_1", version=VERSION,
|
166 |
description="Relation classification on clean data"),
|
167 |
+
datasets.BuilderConfig(name="Subtask_1_2", version=VERSION,
|
168 |
description="Relation classification on noisy data"),
|
169 |
+
|
170 |
]
|
171 |
+
DEFAULT_CONFIG_NAME = "Subtask_1_1"
|
172 |
|
173 |
def _info(self):
|
174 |
+
class_labels = ["","USAGE", "RESULT", "MODEL-FEATURE", "PART_WHOLE", "TOPIC", "COMPARE"]
|
175 |
features = datasets.Features(
|
176 |
{
|
177 |
"id": datasets.Value("string"),
|
|
|
219 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
220 |
urls = _URLS[self.config.name]
|
221 |
downloaded_files = dl_manager.download(urls)
|
222 |
+
print(downloaded_files)
|
223 |
|
224 |
return [
|
225 |
datasets.SplitGenerator(
|
226 |
name=datasets.Split.TRAIN,
|
227 |
# These kwargs will be passed to _generate_examples
|
228 |
gen_kwargs={
|
229 |
+
"relation_filepath": downloaded_files['train']["relations"],
|
230 |
+
"text_filepath": downloaded_files['train']["text"],
|
231 |
+
|
232 |
}
|
233 |
|
234 |
+
),
|
235 |
+
datasets.SplitGenerator(
|
236 |
+
name=datasets.Split.TEST,
|
237 |
+
# These kwargs will be passed to _generate_examples
|
238 |
+
gen_kwargs={
|
239 |
+
"relation_filepath": downloaded_files['test']["relations"],
|
240 |
+
"text_filepath": downloaded_files['test']["text"],
|
241 |
+
|
242 |
+
}
|
243 |
|
244 |
+
)]
|
245 |
+
|
246 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
247 |
def _generate_examples(self, relation_filepath, text_filepath):
|
248 |
+
|
249 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
250 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
251 |
with open(relation_filepath, encoding="utf-8") as f:
|