ID_REG_MD_RAG / database_loader.py
Azzindani's picture
Upload complete processed Indonesian legal database
923ad88 verified
import pandas as pd
import numpy as np
import json
import pickle
from pathlib import Path
from datasets import load_dataset
from typing import Dict, List, Tuple, Optional
import networkx as nx
class ProcessedLegalDatabaseLoader:
"""
Efficient loader for preprocessed Indonesian legal database
"""
def __init__(self, repo_or_path: str, local_mode: bool = False):
"""
Initialize loader
Args:
repo_or_path: HuggingFace repo ID or local path
local_mode: If True, load from local files
"""
self.repo_or_path = repo_or_path
self.local_mode = local_mode
self.df = None
self.embeddings = None
self.tfidf_components = None
self.knowledge_graph = None
self.config = None
def load_database(self) -> pd.DataFrame:
"""Load main database"""
if self.local_mode:
db_path = Path(self.repo_or_path) / "processed_legal_database.parquet"
self.df = pd.read_parquet(db_path)
else:
dataset = load_dataset(self.repo_or_path, split='train')
self.df = dataset.to_pandas()
# Convert JSON strings back to objects
self.df['kg_entities'] = self.df['kg_entities'].apply(
lambda x: json.loads(x) if isinstance(x, str) else x
)
self.df['kg_concepts'] = self.df['kg_concepts'].apply(
lambda x: json.loads(x) if isinstance(x, str) else x
)
print(f"Database loaded: {len(self.df)} records")
return self.df
def load_embeddings(self) -> np.ndarray:
"""Load embeddings array"""
if self.local_mode:
emb_path = Path(self.repo_or_path) / "embeddings.npy"
self.embeddings = np.load(emb_path)
else:
# Extract from DataFrame
if self.df is None:
self.load_database()
embeddings_list = []
for embedding in self.df['embedding']:
if isinstance(embedding, list):
embeddings_list.append(np.array(embedding, dtype=np.float32))
else:
embeddings_list.append(embedding)
self.embeddings = np.vstack(embeddings_list)
print(f"Embeddings loaded: {self.embeddings.shape}")
return self.embeddings
def load_tfidf_components(self) -> Dict:
"""Load TF-IDF components"""
if self.local_mode:
tfidf_path = Path(self.repo_or_path) / "tfidf_components.pkl"
with open(tfidf_path, 'rb') as f:
self.tfidf_components = pickle.load(f)
else:
print("TF-IDF components only available in local mode")
return None
print("TF-IDF components loaded")
return self.tfidf_components
def load_knowledge_graph(self) -> nx.DiGraph:
"""Load knowledge graph"""
if self.local_mode:
kg_path = Path(self.repo_or_path) / "knowledge_graph.json"
else:
# Download from HuggingFace
from huggingface_hub import hf_hub_download
kg_path = hf_hub_download(
repo_id=self.repo_or_path,
filename="knowledge_graph.json",
repo_type="dataset"
)
with open(kg_path, 'r', encoding='utf-8') as f:
kg_data = json.load(f)
self.knowledge_graph = nx.node_link_graph(kg_data['graph'])
print(f"Knowledge graph loaded: {self.knowledge_graph.number_of_nodes()} nodes, {self.knowledge_graph.number_of_edges()} edges")
return self.knowledge_graph
def load_config(self) -> Dict:
"""Load configuration"""
if self.local_mode:
config_path = Path(self.repo_or_path) / "config.json"
else:
from huggingface_hub import hf_hub_download
config_path = hf_hub_download(
repo_id=self.repo_or_path,
filename="config.json",
repo_type="dataset"
)
with open(config_path, 'r', encoding='utf-8') as f:
self.config = json.load(f)
print("Configuration loaded")
return self.config
def load_all(self) -> Tuple[pd.DataFrame, np.ndarray, Dict, nx.DiGraph, Dict]:
"""Load all components"""
database = self.load_database()
embeddings = self.load_embeddings()
tfidf = self.load_tfidf_components()
kg = self.load_knowledge_graph()
config = self.load_config()
return database, embeddings, tfidf, kg, config
def get_statistics(self) -> Dict:
"""Get database statistics"""
if self.df is None:
self.load_database()
stats = {
'total_records': len(self.df),
'unique_regulation_types': self.df['regulation_type'].nunique(),
'date_range': f"{self.df['year'].min()} - {self.df['year'].max()}",
'avg_authority_score': self.df['authority_score'].mean(),
'avg_temporal_score': self.df['temporal_score'].mean(),
'avg_legal_richness': self.df['legal_richness'].mean(),
'avg_kg_connectivity': self.df['kg_connectivity'].mean(),
'embedding_dim': self.df['embedding_dim'].iloc[0] if 'embedding_dim' in self.df.columns else None
}
return stats
# Example usage:
# loader = ProcessedLegalDatabaseLoader("your-username/indonesian-legal-rag-processed")
# df, embeddings, tfidf, kg, config = loader.load_all()