notebooks uncommented to filter and download data
Browse files- utils/jwst_downloading.ipynb +1099 -0
- utils/jwst_filtering.ipynb +0 -0
utils/jwst_downloading.ipynb
ADDED
@@ -0,0 +1,1099 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "07b57859",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"\"\"\"\n",
|
11 |
+
"\n",
|
12 |
+
"FULLY UNCLEANED CODE\n",
|
13 |
+
"\n",
|
14 |
+
"Contains the necessary scripts to actually download the FITS files that are in your JWST csv.\n",
|
15 |
+
"\n",
|
16 |
+
"\n",
|
17 |
+
"\"\"\""
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"id": "240cc56f-e1b6-47f7-93ee-dc1a0918f5af",
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"import pandas as pd\n",
|
28 |
+
"import numpy as np\n",
|
29 |
+
"from astropy.coordinates import SkyCoord\n",
|
30 |
+
"from astropy import units as u\n",
|
31 |
+
"from sklearn.cluster import AgglomerativeClustering\n",
|
32 |
+
"import matplotlib.pyplot as plt\n",
|
33 |
+
"import matplotlib.patches as patches\n",
|
34 |
+
"import os\n",
|
35 |
+
"import numpy as np\n",
|
36 |
+
"from astropy.io import fits\n",
|
37 |
+
"from astropy.wcs import WCS\n",
|
38 |
+
"from tqdm import tqdm\n",
|
39 |
+
"\n",
|
40 |
+
"df = pd.read_csv(\"jwst_FINAL.csv\")\n",
|
41 |
+
"\n",
|
42 |
+
"df = df.rename(columns={'sci_data_set_name': 'obs_id'})\n",
|
43 |
+
"\n",
|
44 |
+
"# Effective integration time should be more than 30 seconds\n",
|
45 |
+
"df = df[df['effinttm'] > 30]\n",
|
46 |
+
"\n",
|
47 |
+
"df = df[df['exp_type'] == \"NRC_IMAGE\"]\n",
|
48 |
+
"\n",
|
49 |
+
"\"\"\"\n",
|
50 |
+
"The data downloading process looks like the following:\n",
|
51 |
+
"\n",
|
52 |
+
"1. Use MastMissions to query the list of observations and their metadata, like ra/dec\n",
|
53 |
+
"\n",
|
54 |
+
"2. Filtering process to make sure there are no overlapping observations.\n",
|
55 |
+
"\n",
|
56 |
+
"3. Use Observations to pull the names of the data files associated with each observation.\n",
|
57 |
+
"\n",
|
58 |
+
"4. Pull the data by wget all those file links.\n",
|
59 |
+
"\n",
|
60 |
+
"5. Preprocess.\n",
|
61 |
+
"\n",
|
62 |
+
"Note that the data file names use the first 6 chars of obs_id from this observations array\n",
|
63 |
+
"that we have created. That's why we create the shortened identifier, to match\n",
|
64 |
+
"observations to product file names. This will be used later.\n",
|
65 |
+
"\"\"\"\n",
|
66 |
+
"\n",
|
67 |
+
"df['obs_id_short'] = df['obs_id'].str[:6]\n",
|
68 |
+
"\n",
|
69 |
+
"RA_NAME = 'targ_ra'\n",
|
70 |
+
"DEC_NAME = 'targ_dec'\n",
|
71 |
+
"\n",
|
72 |
+
"assert df[RA_NAME].isna().sum() < 10\n",
|
73 |
+
"assert df[DEC_NAME].isna().sum() < 10\n",
|
74 |
+
"\n",
|
75 |
+
"df = df.dropna(subset=[RA_NAME, DEC_NAME])\n",
|
76 |
+
"\n",
|
77 |
+
"df = df.groupby([RA_NAME, DEC_NAME]).apply(lambda x: x.drop_duplicates(subset='detector', keep='first'))\n",
|
78 |
+
"\n",
|
79 |
+
"multi_index_df = df.index.to_frame().groupby(level=0).first().reset_index(drop=True)\n",
|
80 |
+
"multi_index_df = multi_index_df.drop(columns=[2])\n",
|
81 |
+
"\n",
|
82 |
+
"df = df.reset_index(drop=True)"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 173,
|
88 |
+
"id": "cd89a849-6ef4-493a-910f-0b385e254eb2",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"name": "stderr",
|
93 |
+
"output_type": "stream",
|
94 |
+
"text": [
|
95 |
+
"100%|█████████████████████████████████████████| 117/117 [13:48<00:00, 7.08s/it]\n"
|
96 |
+
]
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"import requests\n",
|
101 |
+
"import csv\n",
|
102 |
+
"\n",
|
103 |
+
"# Function to search datasets using the given endpoint\n",
|
104 |
+
"def search_datasets(dataset_ids):\n",
|
105 |
+
" # Base URL for the search API\n",
|
106 |
+
" base_url = 'https://mast.stsci.edu/search/jwst/api/v0.1/list_products'\n",
|
107 |
+
" \n",
|
108 |
+
" # List to store search results\n",
|
109 |
+
" search_results = []\n",
|
110 |
+
" \n",
|
111 |
+
" ids_str = ','.join(dataset_ids)\n",
|
112 |
+
"\n",
|
113 |
+
" # Construct the search URL\n",
|
114 |
+
" search_url = f\"{base_url}?dataset_ids={ids_str}\"\n",
|
115 |
+
"\n",
|
116 |
+
" # Make the API request\n",
|
117 |
+
" response = requests.get(search_url)\n",
|
118 |
+
"\n",
|
119 |
+
" # Check if the request was successful\n",
|
120 |
+
" if response.status_code == 200:\n",
|
121 |
+
" # Parse the JSON response\n",
|
122 |
+
" data = response.json()\n",
|
123 |
+
" search_results.append(data)\n",
|
124 |
+
" else:\n",
|
125 |
+
" # Handle errors\n",
|
126 |
+
" print(f\"Error: Unable to fetch data for dataset ID {dataset_id}\")\n",
|
127 |
+
" \n",
|
128 |
+
" return search_results\n",
|
129 |
+
"\n",
|
130 |
+
"# Example usage\n",
|
131 |
+
"dataset_ids_csv = list(df['fileSetName'])\n",
|
132 |
+
"\n",
|
133 |
+
"sz_chunk = 10\n",
|
134 |
+
"chunks = [dataset_ids_csv[i:i+sz_chunk] for i in range(0,len(dataset_ids_csv), sz_chunk)]\n",
|
135 |
+
"\n",
|
136 |
+
"all_results = []\n",
|
137 |
+
"\n",
|
138 |
+
"for chunk in tqdm(chunks):\n",
|
139 |
+
" all_results.append(search_datasets(chunk))"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": 179,
|
145 |
+
"id": "b6aad3d4-fdd0-4799-a84c-692d1c94463d",
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [
|
148 |
+
{
|
149 |
+
"name": "stderr",
|
150 |
+
"output_type": "stream",
|
151 |
+
"text": [
|
152 |
+
"100%|███████████████████████████████████████| 117/117 [00:00<00:00, 3803.87it/s]\n"
|
153 |
+
]
|
154 |
+
}
|
155 |
+
],
|
156 |
+
"source": [
|
157 |
+
"new_all_results = []\n",
|
158 |
+
"\n",
|
159 |
+
"for result in tqdm(all_results):\n",
|
160 |
+
" l = result[0]['products']\n",
|
161 |
+
" new_all_results.extend(l)"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 181,
|
167 |
+
"id": "0c2caafa-d649-4e2a-92a6-24680ee06cb7",
|
168 |
+
"metadata": {},
|
169 |
+
"outputs": [],
|
170 |
+
"source": [
|
171 |
+
"new_all_results_df = pd.DataFrame(new_all_results)"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 184,
|
177 |
+
"id": "e189e901-dbad-4689-8454-ee9e1ccab09a",
|
178 |
+
"metadata": {},
|
179 |
+
"outputs": [],
|
180 |
+
"source": [
|
181 |
+
"detectors = ['NRCA1_FULL', 'NRCA2_FULL', 'NRCA3_FULL', 'NRCA4_FULL', 'NRCB1_FULL', 'NRCB2_FULL', 'NRCB3_FULL', 'NRCB4_FULL']\n",
|
182 |
+
"\n",
|
183 |
+
"\n",
|
184 |
+
"resultsdf = new_all_results_df[new_all_results_df['category'] == '1b']\n",
|
185 |
+
"resultsdf = resultsdf[resultsdf['filters'].isin(detectors)]"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 189,
|
191 |
+
"id": "1f46cbf4-5b53-437d-8e9b-f7d126839ccc",
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [
|
194 |
+
{
|
195 |
+
"data": {
|
196 |
+
"text/html": [
|
197 |
+
"<div>\n",
|
198 |
+
"<style scoped>\n",
|
199 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
200 |
+
" vertical-align: middle;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe tbody tr th {\n",
|
204 |
+
" vertical-align: top;\n",
|
205 |
+
" }\n",
|
206 |
+
"\n",
|
207 |
+
" .dataframe thead th {\n",
|
208 |
+
" text-align: right;\n",
|
209 |
+
" }\n",
|
210 |
+
"</style>\n",
|
211 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
212 |
+
" <thead>\n",
|
213 |
+
" <tr style=\"text-align: right;\">\n",
|
214 |
+
" <th></th>\n",
|
215 |
+
" <th>product_key</th>\n",
|
216 |
+
" <th>access</th>\n",
|
217 |
+
" <th>dataset</th>\n",
|
218 |
+
" <th>instrument_name</th>\n",
|
219 |
+
" <th>filters</th>\n",
|
220 |
+
" <th>filename</th>\n",
|
221 |
+
" <th>uri</th>\n",
|
222 |
+
" <th>authz_primary_identifier</th>\n",
|
223 |
+
" <th>authz_secondary_identifier</th>\n",
|
224 |
+
" <th>file_suffix</th>\n",
|
225 |
+
" <th>category</th>\n",
|
226 |
+
" <th>size</th>\n",
|
227 |
+
" <th>type</th>\n",
|
228 |
+
" </tr>\n",
|
229 |
+
" </thead>\n",
|
230 |
+
" <tbody>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>28</th>\n",
|
233 |
+
" <td>jw02561001002_06101_00001_jw02561001002_06101_...</td>\n",
|
234 |
+
" <td>PUBLIC</td>\n",
|
235 |
+
" <td>jw02561001002_06101_00001</td>\n",
|
236 |
+
" <td>NIRCAM</td>\n",
|
237 |
+
" <td>NRCA3_FULL</td>\n",
|
238 |
+
" <td>jw02561001002_06101_00001_nrca3_uncal.fits</td>\n",
|
239 |
+
" <td>jw02561001002_06101_00001/jw02561001002_06101_...</td>\n",
|
240 |
+
" <td>jw02561001002_06101_00001_nrca3_uncal.fits</td>\n",
|
241 |
+
" <td>jw02561001002_06101_00001_nrca3_uncal.fits</td>\n",
|
242 |
+
" <td>_uncal</td>\n",
|
243 |
+
" <td>1b</td>\n",
|
244 |
+
" <td>75553920</td>\n",
|
245 |
+
" <td>science</td>\n",
|
246 |
+
" </tr>\n",
|
247 |
+
" <tr>\n",
|
248 |
+
" <th>50</th>\n",
|
249 |
+
" <td>jw02561001002_06101_00001_jw02561001002_06101_...</td>\n",
|
250 |
+
" <td>PUBLIC</td>\n",
|
251 |
+
" <td>jw02561001002_06101_00001</td>\n",
|
252 |
+
" <td>NIRCAM</td>\n",
|
253 |
+
" <td>NRCB3_FULL</td>\n",
|
254 |
+
" <td>jw02561001002_06101_00001_nrcb3_uncal.fits</td>\n",
|
255 |
+
" <td>jw02561001002_06101_00001/jw02561001002_06101_...</td>\n",
|
256 |
+
" <td>jw02561001002_06101_00001_nrcb3_uncal.fits</td>\n",
|
257 |
+
" <td>jw02561001002_06101_00001_nrcb3_uncal.fits</td>\n",
|
258 |
+
" <td>_uncal</td>\n",
|
259 |
+
" <td>1b</td>\n",
|
260 |
+
" <td>75553920</td>\n",
|
261 |
+
" <td>science</td>\n",
|
262 |
+
" </tr>\n",
|
263 |
+
" <tr>\n",
|
264 |
+
" <th>72</th>\n",
|
265 |
+
" <td>jw02561001002_06101_00001_jw02561001002_06101_...</td>\n",
|
266 |
+
" <td>PUBLIC</td>\n",
|
267 |
+
" <td>jw02561001002_06101_00001</td>\n",
|
268 |
+
" <td>NIRCAM</td>\n",
|
269 |
+
" <td>NRCA2_FULL</td>\n",
|
270 |
+
" <td>jw02561001002_06101_00001_nrca2_uncal.fits</td>\n",
|
271 |
+
" <td>jw02561001002_06101_00001/jw02561001002_06101_...</td>\n",
|
272 |
+
" <td>jw02561001002_06101_00001_nrca2_uncal.fits</td>\n",
|
273 |
+
" <td>jw02561001002_06101_00001_nrca2_uncal.fits</td>\n",
|
274 |
+
" <td>_uncal</td>\n",
|
275 |
+
" <td>1b</td>\n",
|
276 |
+
" <td>75553920</td>\n",
|
277 |
+
" <td>science</td>\n",
|
278 |
+
" </tr>\n",
|
279 |
+
" <tr>\n",
|
280 |
+
" <th>93</th>\n",
|
281 |
+
" <td>jw02561001002_06101_00001_jw02561001002_06101_...</td>\n",
|
282 |
+
" <td>PUBLIC</td>\n",
|
283 |
+
" <td>jw02561001002_06101_00001</td>\n",
|
284 |
+
" <td>NIRCAM</td>\n",
|
285 |
+
" <td>NRCB2_FULL</td>\n",
|
286 |
+
" <td>jw02561001002_06101_00001_nrcb2_uncal.fits</td>\n",
|
287 |
+
" <td>jw02561001002_06101_00001/jw02561001002_06101_...</td>\n",
|
288 |
+
" <td>jw02561001002_06101_00001_nrcb2_uncal.fits</td>\n",
|
289 |
+
" <td>jw02561001002_06101_00001_nrcb2_uncal.fits</td>\n",
|
290 |
+
" <td>_uncal</td>\n",
|
291 |
+
" <td>1b</td>\n",
|
292 |
+
" <td>75553920</td>\n",
|
293 |
+
" <td>science</td>\n",
|
294 |
+
" </tr>\n",
|
295 |
+
" <tr>\n",
|
296 |
+
" <th>114</th>\n",
|
297 |
+
" <td>jw02561001002_06101_00001_jw02561001002_06101_...</td>\n",
|
298 |
+
" <td>PUBLIC</td>\n",
|
299 |
+
" <td>jw02561001002_06101_00001</td>\n",
|
300 |
+
" <td>NIRCAM</td>\n",
|
301 |
+
" <td>NRCA4_FULL</td>\n",
|
302 |
+
" <td>jw02561001002_06101_00001_nrca4_uncal.fits</td>\n",
|
303 |
+
" <td>jw02561001002_06101_00001/jw02561001002_06101_...</td>\n",
|
304 |
+
" <td>jw02561001002_06101_00001_nrca4_uncal.fits</td>\n",
|
305 |
+
" <td>jw02561001002_06101_00001_nrca4_uncal.fits</td>\n",
|
306 |
+
" <td>_uncal</td>\n",
|
307 |
+
" <td>1b</td>\n",
|
308 |
+
" <td>75553920</td>\n",
|
309 |
+
" <td>science</td>\n",
|
310 |
+
" </tr>\n",
|
311 |
+
" <tr>\n",
|
312 |
+
" <th>...</th>\n",
|
313 |
+
" <td>...</td>\n",
|
314 |
+
" <td>...</td>\n",
|
315 |
+
" <td>...</td>\n",
|
316 |
+
" <td>...</td>\n",
|
317 |
+
" <td>...</td>\n",
|
318 |
+
" <td>...</td>\n",
|
319 |
+
" <td>...</td>\n",
|
320 |
+
" <td>...</td>\n",
|
321 |
+
" <td>...</td>\n",
|
322 |
+
" <td>...</td>\n",
|
323 |
+
" <td>...</td>\n",
|
324 |
+
" <td>...</td>\n",
|
325 |
+
" <td>...</td>\n",
|
326 |
+
" </tr>\n",
|
327 |
+
" <tr>\n",
|
328 |
+
" <th>216718</th>\n",
|
329 |
+
" <td>jw02130007001_03101_00002_jw02130007001_03101_...</td>\n",
|
330 |
+
" <td>PUBLIC</td>\n",
|
331 |
+
" <td>jw02130007001_03101_00002</td>\n",
|
332 |
+
" <td>NIRCAM</td>\n",
|
333 |
+
" <td>NRCB1_FULL</td>\n",
|
334 |
+
" <td>jw02130007001_03101_00002_nrcb1_uncal.fits</td>\n",
|
335 |
+
" <td>jw02130007001_03101_00002/jw02130007001_03101_...</td>\n",
|
336 |
+
" <td>jw02130007001_03101_00002_nrcb1_uncal.fits</td>\n",
|
337 |
+
" <td>jw02130007001_03101_00002_nrcb1_uncal.fits</td>\n",
|
338 |
+
" <td>_uncal</td>\n",
|
339 |
+
" <td>1b</td>\n",
|
340 |
+
" <td>75553920</td>\n",
|
341 |
+
" <td>science</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" <tr>\n",
|
344 |
+
" <th>216740</th>\n",
|
345 |
+
" <td>jw02130007001_03101_00002_jw02130007001_03101_...</td>\n",
|
346 |
+
" <td>PUBLIC</td>\n",
|
347 |
+
" <td>jw02130007001_03101_00002</td>\n",
|
348 |
+
" <td>NIRCAM</td>\n",
|
349 |
+
" <td>NRCA4_FULL</td>\n",
|
350 |
+
" <td>jw02130007001_03101_00002_nrca4_uncal.fits</td>\n",
|
351 |
+
" <td>jw02130007001_03101_00002/jw02130007001_03101_...</td>\n",
|
352 |
+
" <td>jw02130007001_03101_00002_nrca4_uncal.fits</td>\n",
|
353 |
+
" <td>jw02130007001_03101_00002_nrca4_uncal.fits</td>\n",
|
354 |
+
" <td>_uncal</td>\n",
|
355 |
+
" <td>1b</td>\n",
|
356 |
+
" <td>75553920</td>\n",
|
357 |
+
" <td>science</td>\n",
|
358 |
+
" </tr>\n",
|
359 |
+
" <tr>\n",
|
360 |
+
" <th>216786</th>\n",
|
361 |
+
" <td>jw02130007001_03101_00002_jw02130007001_03101_...</td>\n",
|
362 |
+
" <td>PUBLIC</td>\n",
|
363 |
+
" <td>jw02130007001_03101_00002</td>\n",
|
364 |
+
" <td>NIRCAM</td>\n",
|
365 |
+
" <td>NRCA1_FULL</td>\n",
|
366 |
+
" <td>jw02130007001_03101_00002_nrca1_uncal.fits</td>\n",
|
367 |
+
" <td>jw02130007001_03101_00002/jw02130007001_03101_...</td>\n",
|
368 |
+
" <td>jw02130007001_03101_00002_nrca1_uncal.fits</td>\n",
|
369 |
+
" <td>jw02130007001_03101_00002_nrca1_uncal.fits</td>\n",
|
370 |
+
" <td>_uncal</td>\n",
|
371 |
+
" <td>1b</td>\n",
|
372 |
+
" <td>75553920</td>\n",
|
373 |
+
" <td>science</td>\n",
|
374 |
+
" </tr>\n",
|
375 |
+
" <tr>\n",
|
376 |
+
" <th>216808</th>\n",
|
377 |
+
" <td>jw02130007001_03101_00002_jw02130007001_03101_...</td>\n",
|
378 |
+
" <td>PUBLIC</td>\n",
|
379 |
+
" <td>jw02130007001_03101_00002</td>\n",
|
380 |
+
" <td>NIRCAM</td>\n",
|
381 |
+
" <td>NRCA3_FULL</td>\n",
|
382 |
+
" <td>jw02130007001_03101_00002_nrca3_uncal.fits</td>\n",
|
383 |
+
" <td>jw02130007001_03101_00002/jw02130007001_03101_...</td>\n",
|
384 |
+
" <td>jw02130007001_03101_00002_nrca3_uncal.fits</td>\n",
|
385 |
+
" <td>jw02130007001_03101_00002_nrca3_uncal.fits</td>\n",
|
386 |
+
" <td>_uncal</td>\n",
|
387 |
+
" <td>1b</td>\n",
|
388 |
+
" <td>75553920</td>\n",
|
389 |
+
" <td>science</td>\n",
|
390 |
+
" </tr>\n",
|
391 |
+
" <tr>\n",
|
392 |
+
" <th>216830</th>\n",
|
393 |
+
" <td>jw02130007001_03101_00002_jw02130007001_03101_...</td>\n",
|
394 |
+
" <td>PUBLIC</td>\n",
|
395 |
+
" <td>jw02130007001_03101_00002</td>\n",
|
396 |
+
" <td>NIRCAM</td>\n",
|
397 |
+
" <td>NRCA2_FULL</td>\n",
|
398 |
+
" <td>jw02130007001_03101_00002_nrca2_uncal.fits</td>\n",
|
399 |
+
" <td>jw02130007001_03101_00002/jw02130007001_03101_...</td>\n",
|
400 |
+
" <td>jw02130007001_03101_00002_nrca2_uncal.fits</td>\n",
|
401 |
+
" <td>jw02130007001_03101_00002_nrca2_uncal.fits</td>\n",
|
402 |
+
" <td>_uncal</td>\n",
|
403 |
+
" <td>1b</td>\n",
|
404 |
+
" <td>75553920</td>\n",
|
405 |
+
" <td>science</td>\n",
|
406 |
+
" </tr>\n",
|
407 |
+
" </tbody>\n",
|
408 |
+
"</table>\n",
|
409 |
+
"<p>7537 rows × 13 columns</p>\n",
|
410 |
+
"</div>"
|
411 |
+
],
|
412 |
+
"text/plain": [
|
413 |
+
" product_key access \\\n",
|
414 |
+
"28 jw02561001002_06101_00001_jw02561001002_06101_... PUBLIC \n",
|
415 |
+
"50 jw02561001002_06101_00001_jw02561001002_06101_... PUBLIC \n",
|
416 |
+
"72 jw02561001002_06101_00001_jw02561001002_06101_... PUBLIC \n",
|
417 |
+
"93 jw02561001002_06101_00001_jw02561001002_06101_... PUBLIC \n",
|
418 |
+
"114 jw02561001002_06101_00001_jw02561001002_06101_... PUBLIC \n",
|
419 |
+
"... ... ... \n",
|
420 |
+
"216718 jw02130007001_03101_00002_jw02130007001_03101_... PUBLIC \n",
|
421 |
+
"216740 jw02130007001_03101_00002_jw02130007001_03101_... PUBLIC \n",
|
422 |
+
"216786 jw02130007001_03101_00002_jw02130007001_03101_... PUBLIC \n",
|
423 |
+
"216808 jw02130007001_03101_00002_jw02130007001_03101_... PUBLIC \n",
|
424 |
+
"216830 jw02130007001_03101_00002_jw02130007001_03101_... PUBLIC \n",
|
425 |
+
"\n",
|
426 |
+
" dataset instrument_name filters \\\n",
|
427 |
+
"28 jw02561001002_06101_00001 NIRCAM NRCA3_FULL \n",
|
428 |
+
"50 jw02561001002_06101_00001 NIRCAM NRCB3_FULL \n",
|
429 |
+
"72 jw02561001002_06101_00001 NIRCAM NRCA2_FULL \n",
|
430 |
+
"93 jw02561001002_06101_00001 NIRCAM NRCB2_FULL \n",
|
431 |
+
"114 jw02561001002_06101_00001 NIRCAM NRCA4_FULL \n",
|
432 |
+
"... ... ... ... \n",
|
433 |
+
"216718 jw02130007001_03101_00002 NIRCAM NRCB1_FULL \n",
|
434 |
+
"216740 jw02130007001_03101_00002 NIRCAM NRCA4_FULL \n",
|
435 |
+
"216786 jw02130007001_03101_00002 NIRCAM NRCA1_FULL \n",
|
436 |
+
"216808 jw02130007001_03101_00002 NIRCAM NRCA3_FULL \n",
|
437 |
+
"216830 jw02130007001_03101_00002 NIRCAM NRCA2_FULL \n",
|
438 |
+
"\n",
|
439 |
+
" filename \\\n",
|
440 |
+
"28 jw02561001002_06101_00001_nrca3_uncal.fits \n",
|
441 |
+
"50 jw02561001002_06101_00001_nrcb3_uncal.fits \n",
|
442 |
+
"72 jw02561001002_06101_00001_nrca2_uncal.fits \n",
|
443 |
+
"93 jw02561001002_06101_00001_nrcb2_uncal.fits \n",
|
444 |
+
"114 jw02561001002_06101_00001_nrca4_uncal.fits \n",
|
445 |
+
"... ... \n",
|
446 |
+
"216718 jw02130007001_03101_00002_nrcb1_uncal.fits \n",
|
447 |
+
"216740 jw02130007001_03101_00002_nrca4_uncal.fits \n",
|
448 |
+
"216786 jw02130007001_03101_00002_nrca1_uncal.fits \n",
|
449 |
+
"216808 jw02130007001_03101_00002_nrca3_uncal.fits \n",
|
450 |
+
"216830 jw02130007001_03101_00002_nrca2_uncal.fits \n",
|
451 |
+
"\n",
|
452 |
+
" uri \\\n",
|
453 |
+
"28 jw02561001002_06101_00001/jw02561001002_06101_... \n",
|
454 |
+
"50 jw02561001002_06101_00001/jw02561001002_06101_... \n",
|
455 |
+
"72 jw02561001002_06101_00001/jw02561001002_06101_... \n",
|
456 |
+
"93 jw02561001002_06101_00001/jw02561001002_06101_... \n",
|
457 |
+
"114 jw02561001002_06101_00001/jw02561001002_06101_... \n",
|
458 |
+
"... ... \n",
|
459 |
+
"216718 jw02130007001_03101_00002/jw02130007001_03101_... \n",
|
460 |
+
"216740 jw02130007001_03101_00002/jw02130007001_03101_... \n",
|
461 |
+
"216786 jw02130007001_03101_00002/jw02130007001_03101_... \n",
|
462 |
+
"216808 jw02130007001_03101_00002/jw02130007001_03101_... \n",
|
463 |
+
"216830 jw02130007001_03101_00002/jw02130007001_03101_... \n",
|
464 |
+
"\n",
|
465 |
+
" authz_primary_identifier \\\n",
|
466 |
+
"28 jw02561001002_06101_00001_nrca3_uncal.fits \n",
|
467 |
+
"50 jw02561001002_06101_00001_nrcb3_uncal.fits \n",
|
468 |
+
"72 jw02561001002_06101_00001_nrca2_uncal.fits \n",
|
469 |
+
"93 jw02561001002_06101_00001_nrcb2_uncal.fits \n",
|
470 |
+
"114 jw02561001002_06101_00001_nrca4_uncal.fits \n",
|
471 |
+
"... ... \n",
|
472 |
+
"216718 jw02130007001_03101_00002_nrcb1_uncal.fits \n",
|
473 |
+
"216740 jw02130007001_03101_00002_nrca4_uncal.fits \n",
|
474 |
+
"216786 jw02130007001_03101_00002_nrca1_uncal.fits \n",
|
475 |
+
"216808 jw02130007001_03101_00002_nrca3_uncal.fits \n",
|
476 |
+
"216830 jw02130007001_03101_00002_nrca2_uncal.fits \n",
|
477 |
+
"\n",
|
478 |
+
" authz_secondary_identifier file_suffix category \\\n",
|
479 |
+
"28 jw02561001002_06101_00001_nrca3_uncal.fits _uncal 1b \n",
|
480 |
+
"50 jw02561001002_06101_00001_nrcb3_uncal.fits _uncal 1b \n",
|
481 |
+
"72 jw02561001002_06101_00001_nrca2_uncal.fits _uncal 1b \n",
|
482 |
+
"93 jw02561001002_06101_00001_nrcb2_uncal.fits _uncal 1b \n",
|
483 |
+
"114 jw02561001002_06101_00001_nrca4_uncal.fits _uncal 1b \n",
|
484 |
+
"... ... ... ... \n",
|
485 |
+
"216718 jw02130007001_03101_00002_nrcb1_uncal.fits _uncal 1b \n",
|
486 |
+
"216740 jw02130007001_03101_00002_nrca4_uncal.fits _uncal 1b \n",
|
487 |
+
"216786 jw02130007001_03101_00002_nrca1_uncal.fits _uncal 1b \n",
|
488 |
+
"216808 jw02130007001_03101_00002_nrca3_uncal.fits _uncal 1b \n",
|
489 |
+
"216830 jw02130007001_03101_00002_nrca2_uncal.fits _uncal 1b \n",
|
490 |
+
"\n",
|
491 |
+
" size type \n",
|
492 |
+
"28 75553920 science \n",
|
493 |
+
"50 75553920 science \n",
|
494 |
+
"72 75553920 science \n",
|
495 |
+
"93 75553920 science \n",
|
496 |
+
"114 75553920 science \n",
|
497 |
+
"... ... ... \n",
|
498 |
+
"216718 75553920 science \n",
|
499 |
+
"216740 75553920 science \n",
|
500 |
+
"216786 75553920 science \n",
|
501 |
+
"216808 75553920 science \n",
|
502 |
+
"216830 75553920 science \n",
|
503 |
+
"\n",
|
504 |
+
"[7537 rows x 13 columns]"
|
505 |
+
]
|
506 |
+
},
|
507 |
+
"execution_count": 189,
|
508 |
+
"metadata": {},
|
509 |
+
"output_type": "execute_result"
|
510 |
+
}
|
511 |
+
],
|
512 |
+
"source": [
|
513 |
+
"resultsdf"
|
514 |
+
]
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"cell_type": "code",
|
518 |
+
"execution_count": 188,
|
519 |
+
"id": "f086c0f9-9ef6-4945-a53a-f3cf051b4dee",
|
520 |
+
"metadata": {},
|
521 |
+
"outputs": [],
|
522 |
+
"source": [
|
523 |
+
"resultsdf.to_csv(\"all_jwst_uris.csv\")"
|
524 |
+
]
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"cell_type": "code",
|
528 |
+
"execution_count": 145,
|
529 |
+
"id": "09ca516e-3bbb-4a2b-9c6e-984c9a7e801a",
|
530 |
+
"metadata": {},
|
531 |
+
"outputs": [
|
532 |
+
{
|
533 |
+
"name": "stdout",
|
534 |
+
"output_type": "stream",
|
535 |
+
"text": [
|
536 |
+
"Symmetric?\n",
|
537 |
+
"True\n",
|
538 |
+
"(475, 475)\n"
|
539 |
+
]
|
540 |
+
}
|
541 |
+
],
|
542 |
+
"source": [
|
543 |
+
"# Array of latitudes and longitudes\n",
|
544 |
+
"# MAKE SURE TO PUT RA=LON, DEC=LAT\n",
|
545 |
+
"latitudes = np.array(multi_index_df.groupby(level=0).first()[DEC_NAME]) # Example latitudes\n",
|
546 |
+
"longitudes = np.array(multi_index_df.groupby(level=0).first()[RA_NAME]) # Example longitudes\n",
|
547 |
+
"\n",
|
548 |
+
"n_points = len(latitudes)\n",
|
549 |
+
"\n",
|
550 |
+
"# Repeat each point n_points times for lat1, lon1\n",
|
551 |
+
"lat1 = np.repeat(latitudes, n_points)\n",
|
552 |
+
"lon1 = np.repeat(longitudes, n_points)\n",
|
553 |
+
"\n",
|
554 |
+
"# Tile the whole array n_points times for lat2, lon2\n",
|
555 |
+
"lat2 = np.tile(latitudes, n_points)\n",
|
556 |
+
"lon2 = np.tile(longitudes, n_points)\n",
|
557 |
+
"\n",
|
558 |
+
"# Calculates angular separation between two spherical coords\n",
|
559 |
+
"# This can be lat/lon or ra/dec\n",
|
560 |
+
"# Taken from astropy\n",
|
561 |
+
"def angular_separation_deg(lon1, lat1, lon2, lat2):\n",
|
562 |
+
" lon1 = np.deg2rad(lon1)\n",
|
563 |
+
" lon2 = np.deg2rad(lon2)\n",
|
564 |
+
" lat1 = np.deg2rad(lat1)\n",
|
565 |
+
" lat2 = np.deg2rad(lat2)\n",
|
566 |
+
" \n",
|
567 |
+
" sdlon = np.sin(lon2 - lon1)\n",
|
568 |
+
" cdlon = np.cos(lon2 - lon1)\n",
|
569 |
+
" slat1 = np.sin(lat1)\n",
|
570 |
+
" slat2 = np.sin(lat2)\n",
|
571 |
+
" clat1 = np.cos(lat1)\n",
|
572 |
+
" clat2 = np.cos(lat2)\n",
|
573 |
+
"\n",
|
574 |
+
" num1 = clat2 * sdlon\n",
|
575 |
+
" num2 = clat1 * slat2 - slat1 * clat2 * cdlon\n",
|
576 |
+
" denominator = slat1 * slat2 + clat1 * clat2 * cdlon\n",
|
577 |
+
"\n",
|
578 |
+
" return np.rad2deg(np.arctan2(np.hypot(num1, num2), denominator))\n",
|
579 |
+
"\n",
|
580 |
+
"# Compute the pairwise angular separations\n",
|
581 |
+
"angular_separations = angular_separation_deg(lon1, lat1, lon2, lat2)\n",
|
582 |
+
"\n",
|
583 |
+
"# Reshape the result into a matrix form\n",
|
584 |
+
"angular_separations_matrix = angular_separations.reshape(n_points, n_points)\n",
|
585 |
+
"\n",
|
586 |
+
"def check_symmetric(a, rtol=1e-05, atol=1e-07):\n",
|
587 |
+
" return np.allclose(a, a.T, rtol=rtol, atol=atol)\n",
|
588 |
+
"\n",
|
589 |
+
"print(\"Symmetric?\")\n",
|
590 |
+
"print(check_symmetric(angular_separations_matrix))\n",
|
591 |
+
"print(angular_separations_matrix.shape)"
|
592 |
+
]
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"cell_type": "code",
|
596 |
+
"execution_count": 84,
|
597 |
+
"id": "85edd94e-5591-4c7c-8251-b8c976962f72",
|
598 |
+
"metadata": {},
|
599 |
+
"outputs": [
|
600 |
+
{
|
601 |
+
"name": "stdout",
|
602 |
+
"output_type": "stream",
|
603 |
+
"text": [
|
604 |
+
"24 40\n",
|
605 |
+
"12 40\n",
|
606 |
+
"76 36\n",
|
607 |
+
"34 30\n",
|
608 |
+
"7 24\n",
|
609 |
+
" ..\n",
|
610 |
+
"221 1\n",
|
611 |
+
"166 1\n",
|
612 |
+
"139 1\n",
|
613 |
+
"176 1\n",
|
614 |
+
"20 1\n",
|
615 |
+
"Length: 311, dtype: int64\n"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"name": "stderr",
|
620 |
+
"output_type": "stream",
|
621 |
+
"text": [
|
622 |
+
"100%|███████████████████████████████████████| 311/311 [00:00<00:00, 3456.86it/s]"
|
623 |
+
]
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"name": "stdout",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"Max subset with minimum distance: 321\n",
|
630 |
+
"1110\n"
|
631 |
+
]
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"name": "stderr",
|
635 |
+
"output_type": "stream",
|
636 |
+
"text": [
|
637 |
+
"\n"
|
638 |
+
]
|
639 |
+
}
|
640 |
+
],
|
641 |
+
"source": [
|
642 |
+
"#HUBBLE_FOV = 0.057\n",
|
643 |
+
"JWST_FOV = 0.0366667\n",
|
644 |
+
"\n",
|
645 |
+
"THRESH = JWST_FOV\n",
|
646 |
+
"\n",
|
647 |
+
"clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
|
648 |
+
"labels = clustering.fit_predict(angular_separations_matrix)\n",
|
649 |
+
"\n",
|
650 |
+
"multi_index_df['label'] = labels\n",
|
651 |
+
"\n",
|
652 |
+
"print(pd.Series(labels).value_counts())\n",
|
653 |
+
"\n",
|
654 |
+
"def max_subset_with_min_distance(points, min_distance):\n",
|
655 |
+
" subset = []\n",
|
656 |
+
" for i, row in points.iterrows():\n",
|
657 |
+
" if all(angular_separation_deg(row[RA_NAME], row[DEC_NAME], existing_point[RA_NAME], existing_point[DEC_NAME]) >= min_distance for existing_point in subset):\n",
|
658 |
+
" subset.append(row)\n",
|
659 |
+
" return subset\n",
|
660 |
+
"\n",
|
661 |
+
"all_subsets = []\n",
|
662 |
+
"\n",
|
663 |
+
"for label in tqdm(np.unique(labels)):\n",
|
664 |
+
" cds = multi_index_df[multi_index_df['label'] == label]\n",
|
665 |
+
" subset = max_subset_with_min_distance(cds, THRESH)\n",
|
666 |
+
" all_subsets.extend(subset)\n",
|
667 |
+
"\n",
|
668 |
+
"print(\"Max subset with minimum distance:\", len(all_subsets))\n",
|
669 |
+
"\n",
|
670 |
+
"locations = pd.DataFrame(all_subsets)\n",
|
671 |
+
"\n",
|
672 |
+
"df = pd.merge(df, locations, on=[RA_NAME, DEC_NAME], how='right')\n",
|
673 |
+
"\n",
|
674 |
+
"print(len(df))"
|
675 |
+
]
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"cell_type": "code",
|
679 |
+
"execution_count": 107,
|
680 |
+
"id": "55a9d951-3210-4a7f-aca8-a0a80628a8ac",
|
681 |
+
"metadata": {},
|
682 |
+
"outputs": [],
|
683 |
+
"source": [
|
684 |
+
"detectors = ['nrca1', 'nrca2', 'nrca3', 'nrca4', 'nrcb1', 'nrcb2', 'nrcb3', 'nrcb4']\n",
|
685 |
+
"obsids_search = []\n",
|
686 |
+
"\n",
|
687 |
+
"for fileset in df['fileSetName']:\n",
|
688 |
+
" for detector in detectors:\n",
|
689 |
+
" obsids_search.append(fileset + \"_\" + detector)"
|
690 |
+
]
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"cell_type": "code",
|
694 |
+
"execution_count": 108,
|
695 |
+
"id": "55ae58fc-5c2f-46ec-8fa7-d7229fd61b5f",
|
696 |
+
"metadata": {},
|
697 |
+
"outputs": [],
|
698 |
+
"source": [
|
699 |
+
"from astroquery.mast import Observations\n",
|
700 |
+
"\n",
|
701 |
+
"# Query for data with the specified obs_id\n",
|
702 |
+
"result = Observations.query_criteria(obs_id=obsids_search)"
|
703 |
+
]
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"cell_type": "code",
|
707 |
+
"execution_count": 120,
|
708 |
+
"id": "5a29aaf9-dd68-4fa2-910a-8d399f4580cd",
|
709 |
+
"metadata": {},
|
710 |
+
"outputs": [
|
711 |
+
{
|
712 |
+
"name": "stderr",
|
713 |
+
"output_type": "stream",
|
714 |
+
"text": [
|
715 |
+
"100%|█████████████████████████████████████████| 108/108 [01:07<00:00, 1.60it/s]\n"
|
716 |
+
]
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"name": "stdout",
|
720 |
+
"output_type": "stream",
|
721 |
+
"text": [
|
722 |
+
"There are 0 unique files, which are 0.0 GB in size.\n"
|
723 |
+
]
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"ename": "ValueError",
|
727 |
+
"evalue": "no values provided to stack.",
|
728 |
+
"output_type": "error",
|
729 |
+
"traceback": [
|
730 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
731 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
732 |
+
"Input \u001b[0;32mIn [120]\u001b[0m, in \u001b[0;36m<cell line: 25>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 21\u001b[0m files[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mobs_id_short\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m files[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mobs_id\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mstr[:\u001b[38;5;241m6\u001b[39m]\n\u001b[1;32m 23\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThere are \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(files)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m unique files, which are \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28msum\u001b[39m(files[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msize\u001b[39m\u001b[38;5;124m'\u001b[39m])\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m10\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m9\u001b[39m\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.1f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m GB in size.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 25\u001b[0m manifest \u001b[38;5;241m=\u001b[39m \u001b[43mObservations\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_products\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfiles\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mobsID\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcurl_flag\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
|
733 |
+
"File \u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/astroquery/mast/observations.py:715\u001b[0m, in \u001b[0;36mObservationsClass.download_products\u001b[0;34m(self, products, download_dir, cache, curl_flag, mrp_only, cloud_only, **filters)\u001b[0m\n\u001b[1;32m 712\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m oid \u001b[38;5;129;01min\u001b[39;00m products:\n\u001b[1;32m 713\u001b[0m product_lists\u001b[38;5;241m.\u001b[39mappend(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_product_list(oid))\n\u001b[0;32m--> 715\u001b[0m products \u001b[38;5;241m=\u001b[39m \u001b[43mvstack\u001b[49m\u001b[43m(\u001b[49m\u001b[43mproduct_lists\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 717\u001b[0m \u001b[38;5;66;03m# apply filters\u001b[39;00m\n\u001b[1;32m 718\u001b[0m products \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfilter_products(products, mrp_only\u001b[38;5;241m=\u001b[39mmrp_only, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mfilters)\n",
|
734 |
+
"File \u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/astropy/table/operations.py:677\u001b[0m, in \u001b[0;36mvstack\u001b[0;34m(tables, join_type, metadata_conflicts)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 624\u001b[0m \u001b[38;5;124;03mStack tables vertically (along rows).\u001b[39;00m\n\u001b[1;32m 625\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 673\u001b[0m \u001b[38;5;124;03m 6 8\u001b[39;00m\n\u001b[1;32m 674\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 675\u001b[0m _check_join_type(join_type, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mvstack\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 677\u001b[0m tables \u001b[38;5;241m=\u001b[39m \u001b[43m_get_list_of_tables\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtables\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# validates input\u001b[39;00m\n\u001b[1;32m 678\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(tables) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 679\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tables[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;66;03m# no point in stacking a single table\u001b[39;00m\n",
|
735 |
+
"File \u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/astropy/table/operations.py:60\u001b[0m, in \u001b[0;36m_get_list_of_tables\u001b[0;34m(tables)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;66;03m# Make sure there is something to stack\u001b[39;00m\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(tables) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m---> 60\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mno values provided to stack.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 62\u001b[0m \u001b[38;5;66;03m# Convert inputs (Table, Row, or anything column-like) to Tables.\u001b[39;00m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;66;03m# Special case that Quantity converts to a QTable.\u001b[39;00m\n\u001b[1;32m 64\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m ii, val \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(tables):\n",
|
736 |
+
"\u001b[0;31mValueError\u001b[0m: no values provided to stack."
|
737 |
+
]
|
738 |
+
}
|
739 |
+
],
|
740 |
+
"source": [
|
741 |
+
"from astropy.table import unique, vstack, Table\n",
|
742 |
+
"\n",
|
743 |
+
"matched_obs = result\n",
|
744 |
+
"\n",
|
745 |
+
"# Split the observations into \"chunks\" of size five\n",
|
746 |
+
"sz_chunk = 5\n",
|
747 |
+
"chunks = [matched_obs[i:i+sz_chunk] for i in range(0,len(matched_obs), sz_chunk)]\n",
|
748 |
+
"\n",
|
749 |
+
"# Get the list of products for each chunk\n",
|
750 |
+
"t = []\n",
|
751 |
+
"for chunk in tqdm(chunks):\n",
|
752 |
+
" t.append(Observations.get_product_list(chunk))\n",
|
753 |
+
"\n",
|
754 |
+
"files = unique(vstack(t), keys='productFilename')\n",
|
755 |
+
"files = files.to_pandas()\n",
|
756 |
+
"\n",
|
757 |
+
"# Ensure we only keep raw data files\n",
|
758 |
+
"files = files[files['productSubGroupDescription'] == 'UNCAL']\n",
|
759 |
+
"\n",
|
760 |
+
"# Create a shortened identified\n",
|
761 |
+
"files['obs_id_short'] = files['obs_id'].str[:6]\n",
|
762 |
+
"\n",
|
763 |
+
"print(f\"There are {len(files)} unique files, which are {sum(files['size'])/10**9:.1f} GB in size.\")\n",
|
764 |
+
"\n",
|
765 |
+
"manifest = Observations.download_products(files['obsID'], curl_flag=True)"
|
766 |
+
]
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"cell_type": "code",
|
770 |
+
"execution_count": null,
|
771 |
+
"id": "b2307af8-d6ea-4969-8b8a-4d42f21d674f",
|
772 |
+
"metadata": {},
|
773 |
+
"outputs": [],
|
774 |
+
"source": [
|
775 |
+
"files[['obsID']].to_csv('list_of_hubble_filenames.csv')"
|
776 |
+
]
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"cell_type": "code",
|
780 |
+
"execution_count": null,
|
781 |
+
"id": "ab5d1fd5-502f-4b94-a8f1-23636043f779",
|
782 |
+
"metadata": {},
|
783 |
+
"outputs": [],
|
784 |
+
"source": [
|
785 |
+
"manifest = Observations.download_products(files['obsID'], curl_flag=True)"
|
786 |
+
]
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"cell_type": "code",
|
790 |
+
"execution_count": null,
|
791 |
+
"id": "b8b7937f-ca1d-4b4c-abef-1055cdf115ef",
|
792 |
+
"metadata": {},
|
793 |
+
"outputs": [],
|
794 |
+
"source": [
|
795 |
+
"wi"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"cell_type": "code",
|
800 |
+
"execution_count": null,
|
801 |
+
"id": "556fdab2-517e-466c-a9ee-c7b629df5276",
|
802 |
+
"metadata": {},
|
803 |
+
"outputs": [],
|
804 |
+
"source": [
|
805 |
+
"import numpy as np\n",
|
806 |
+
"from astropy.io import fits\n",
|
807 |
+
"from astropy.table import Table\n",
|
808 |
+
"import glob\n",
|
809 |
+
"\n",
|
810 |
+
"def create_combined_hubble_file(short_obs_id):\n",
|
811 |
+
" \n",
|
812 |
+
" file_list = list(files[files['obs_id_short'] == short_obs_id]['productFilename'])\n",
|
813 |
+
" \n",
|
814 |
+
" ccd1_data = []\n",
|
815 |
+
" ccd2_data = []\n",
|
816 |
+
" ccd1_times = []\n",
|
817 |
+
" ccd2_times = []\n",
|
818 |
+
" ccd1_headers = []\n",
|
819 |
+
" ccd2_headers = []\n",
|
820 |
+
"\n",
|
821 |
+
" for file in file_list:\n",
|
822 |
+
" with fits.open(file) as hdul:\n",
|
823 |
+
" # Extract TIME-OBS from the primary header\n",
|
824 |
+
" time_obs = hdul[0].header['TIME-OBS']\n",
|
825 |
+
"\n",
|
826 |
+
" # Extract data and headers from HDUs\n",
|
827 |
+
" for hdu in [hdul[1], hdul[4]]:\n",
|
828 |
+
" if hdu.header['CCDCHIP'] == 1:\n",
|
829 |
+
" ccd1_data.append(hdu.data)\n",
|
830 |
+
" ccd1_times.append(time_obs)\n",
|
831 |
+
" ccd1_headers.append(hdul[0].header.copy())\n",
|
832 |
+
" elif hdu.header['CCDCHIP'] == 2:\n",
|
833 |
+
" ccd2_data.append(hdu.data)\n",
|
834 |
+
" ccd2_times.append(time_obs)\n",
|
835 |
+
" ccd2_headers.append(hdul[0].header.copy())\n",
|
836 |
+
"\n",
|
837 |
+
" # Sort the data based on TIME-OBS\n",
|
838 |
+
" ccd1_times, ccd1_data, ccd1_headers = zip(*sorted(zip(ccd1_times, ccd1_data, ccd1_headers)))\n",
|
839 |
+
" ccd2_times, ccd2_data, ccd2_headers = zip(*sorted(zip(ccd2_times, ccd2_data, ccd2_headers)))\n",
|
840 |
+
"\n",
|
841 |
+
" # Concatenate the data for each CCDCHIP\n",
|
842 |
+
" ccd1_concat = np.stack(ccd1_data)\n",
|
843 |
+
" ccd2_concat = np.stack(ccd2_data)\n",
|
844 |
+
"\n",
|
845 |
+
" # Function to create a new FITS file for a given CCDCHIP\n",
|
846 |
+
" def create_fits_file(output_file, ccd_data, ccd_headers, ccd_chip):\n",
|
847 |
+
"\n",
|
848 |
+
" primary_hdu = fits.PrimaryHDU()\n",
|
849 |
+
" primary_hdu.header['EXTEND'] = True\n",
|
850 |
+
" primary_hdu.header['CCDCHIP'] = ccd_chip\n",
|
851 |
+
"\n",
|
852 |
+
" metadata_hdus = [fits.ImageHDU(header=header) for header in ccd_headers]\n",
|
853 |
+
"\n",
|
854 |
+
" # Create ImageHDU with concatenated data\n",
|
855 |
+
" image_hdu = fits.ImageHDU(data=ccd_data, header=fits.Header({'CCDCHIP': ccd_chip}))\n",
|
856 |
+
"\n",
|
857 |
+
" # Create HDUList and write to a new FITS file\n",
|
858 |
+
" hdulist = fits.HDUList([primary_hdu] + [image_hdu] + metadata_hdus)\n",
|
859 |
+
" hdulist.writeto(output_file, overwrite=True)\n",
|
860 |
+
"\n",
|
861 |
+
" # Create FITS files for CCDCHIP 1 and 2\n",
|
862 |
+
" create_fits_file(f'{short_obs_id}_ccd1.fits', ccd1_concat, ccd1_headers, 1)\n",
|
863 |
+
" create_fits_file(f'{short_obs_id}_ccd2.fits', ccd2_concat, ccd2_headers, 2)\n",
|
864 |
+
"\n",
|
865 |
+
" print(\"New FITS files created successfully.\")"
|
866 |
+
]
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"cell_type": "code",
|
870 |
+
"execution_count": null,
|
871 |
+
"id": "d09be044-ce2e-4cb5-ae1f-9562f9ac6fa3",
|
872 |
+
"metadata": {},
|
873 |
+
"outputs": [],
|
874 |
+
"source": [
|
875 |
+
"def visualize_label(df, LABEL=None):\n",
|
876 |
+
" \n",
|
877 |
+
" cds = df\n",
|
878 |
+
" \n",
|
879 |
+
" if LABEL is not None:\n",
|
880 |
+
" cds = cds[labels == LABEL]\n",
|
881 |
+
"\n",
|
882 |
+
" ras, decs = [], []\n",
|
883 |
+
" cmap = []\n",
|
884 |
+
" \n",
|
885 |
+
" print(len(cds))\n",
|
886 |
+
"\n",
|
887 |
+
" for i, cd in cds.iterrows():\n",
|
888 |
+
" ras.append(cd[RA_NAME])\n",
|
889 |
+
" decs.append(cd[DEC_NAME])\n",
|
890 |
+
"\n",
|
891 |
+
" if LABEL is None:\n",
|
892 |
+
" # No gridlines, will be overwhelming\n",
|
893 |
+
"\n",
|
894 |
+
" # Compute the 2D histogram\n",
|
895 |
+
" # Number of bins for x and y; adjust these based on your dataset\n",
|
896 |
+
" bins = (30, 30)\n",
|
897 |
+
"\n",
|
898 |
+
" # Compute the histogram\n",
|
899 |
+
" hist, xedges, yedges = np.histogram2d(ras, decs, bins=bins)\n",
|
900 |
+
" \n",
|
901 |
+
" N_cutoff = 50\n",
|
902 |
+
" hist = np.clip(hist, 0, N_cutoff)\n",
|
903 |
+
"\n",
|
904 |
+
" # Generate a 2D histogram plot\n",
|
905 |
+
" plt.figure(figsize=(8, 6))\n",
|
906 |
+
" plt.imshow(hist, interpolation='nearest', origin='lower',\n",
|
907 |
+
" extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]],\n",
|
908 |
+
" cmap='viridis') # Choose a colormap (e.g., 'viridis', 'plasma', 'inferno')\n",
|
909 |
+
"\n",
|
910 |
+
" # Add labels and title if necessary\n",
|
911 |
+
" plt.colorbar(label='Number of points in bin')\n",
|
912 |
+
" plt.xlabel('RA')\n",
|
913 |
+
" plt.ylabel('DEC')\n",
|
914 |
+
" plt.title(f'2D Histogram of Point Density, clipped to {N_cutoff} points')\n",
|
915 |
+
"\n",
|
916 |
+
" # Show the plot\n",
|
917 |
+
" plt.show()\n",
|
918 |
+
"\n",
|
919 |
+
" return\n",
|
920 |
+
" else:\n",
|
921 |
+
" fig = plt.figure()\n",
|
922 |
+
" ax = fig.gca()\n",
|
923 |
+
" ax.set_xticks(np.arange(np.min(ras), np.max(ras), THRESH))\n",
|
924 |
+
" ax.set_yticks(np.arange(np.min(decs), np.max(decs), THRESH))\n",
|
925 |
+
" plt.scatter(ras, decs, alpha=0.1)\n",
|
926 |
+
" plt.grid()\n",
|
927 |
+
" plt.show()\n",
|
928 |
+
"\n",
|
929 |
+
"visualize_label(df, 7)"
|
930 |
+
]
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"cell_type": "code",
|
934 |
+
"execution_count": null,
|
935 |
+
"id": "35a648ab-07cd-409e-be32-125ead927bdf",
|
936 |
+
"metadata": {},
|
937 |
+
"outputs": [],
|
938 |
+
"source": [
|
939 |
+
"from sklearn.model_selection import train_test_split\n",
|
940 |
+
"\n",
|
941 |
+
"data = list(range(len(labels)))\n",
|
942 |
+
"\n",
|
943 |
+
"# Perform the train-test split with an 80-20 ratio\n",
|
944 |
+
"train_indices, test_indices = train_test_split(data, test_size=0.2, random_state=42)"
|
945 |
+
]
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"cell_type": "code",
|
949 |
+
"execution_count": null,
|
950 |
+
"id": "8f6a0472-b8fc-4989-a506-39019914c853",
|
951 |
+
"metadata": {},
|
952 |
+
"outputs": [],
|
953 |
+
"source": [
|
954 |
+
"sdss_test = all_sdss_data[all_sdss_data['cluster_label'].isin(test_indices)]\n",
|
955 |
+
"sdss_train = all_sdss_data[all_sdss_data['cluster_label'].isin(train_indices)]"
|
956 |
+
]
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"cell_type": "code",
|
960 |
+
"execution_count": null,
|
961 |
+
"id": "bfbe8686-e580-4285-bd8f-43154d18182b",
|
962 |
+
"metadata": {},
|
963 |
+
"outputs": [],
|
964 |
+
"source": [
|
965 |
+
"len(sdss_test)"
|
966 |
+
]
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"cell_type": "code",
|
970 |
+
"execution_count": null,
|
971 |
+
"id": "cacb74dd-0d54-43d7-a301-ea4eb7b3e07e",
|
972 |
+
"metadata": {},
|
973 |
+
"outputs": [],
|
974 |
+
"source": [
|
975 |
+
"len(sdss_train)"
|
976 |
+
]
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"cell_type": "code",
|
980 |
+
"execution_count": null,
|
981 |
+
"id": "f0fb157d-1307-42d9-ac57-7e6aa3cecd84",
|
982 |
+
"metadata": {},
|
983 |
+
"outputs": [],
|
984 |
+
"source": [
|
985 |
+
"sdss_test"
|
986 |
+
]
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"cell_type": "code",
|
990 |
+
"execution_count": null,
|
991 |
+
"id": "62fb160e-74e5-4f50-96ee-109a6261370f",
|
992 |
+
"metadata": {},
|
993 |
+
"outputs": [],
|
994 |
+
"source": [
|
995 |
+
"test_data = pd.DataFrame(test_data)\n",
|
996 |
+
"train_data = pd.DataFrame(train_data)"
|
997 |
+
]
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"cell_type": "code",
|
1001 |
+
"execution_count": null,
|
1002 |
+
"id": "e7b1379c-d5a9-4f3a-ac68-e8b5a46f4c8a",
|
1003 |
+
"metadata": {},
|
1004 |
+
"outputs": [],
|
1005 |
+
"source": [
|
1006 |
+
"\"\"\"\n",
|
1007 |
+
"Code to verify test/train pollution.\n",
|
1008 |
+
"\"\"\"\n",
|
1009 |
+
"\n",
|
1010 |
+
"\n",
|
1011 |
+
"import json\n",
|
1012 |
+
"from math import radians, sin, cos, sqrt, atan2, degrees\n",
|
1013 |
+
"import numpy as np\n",
|
1014 |
+
"import matplotlib.pyplot as plt\n",
|
1015 |
+
"\n",
|
1016 |
+
"\n",
|
1017 |
+
"# Function to load data from file\n",
|
1018 |
+
"def load_data(file_path):\n",
|
1019 |
+
" data = []\n",
|
1020 |
+
" with open(file_path, 'r') as f:\n",
|
1021 |
+
" for line in f:\n",
|
1022 |
+
" data.append(json.loads(line))\n",
|
1023 |
+
" return data\n",
|
1024 |
+
"\n",
|
1025 |
+
"# Load data\n",
|
1026 |
+
"train_file_path = '/Users/rithwik/Desktop/full_train.jsonl.txt'\n",
|
1027 |
+
"test_file_path = '/Users/rithwik/Desktop/full_test.jsonl.txt'\n",
|
1028 |
+
"#train_data = sdss_train\n",
|
1029 |
+
"#test_data = sdss_test\n",
|
1030 |
+
"\n",
|
1031 |
+
"# Define the threshold\n",
|
1032 |
+
"threshold = 0.09*3\n",
|
1033 |
+
"\n",
|
1034 |
+
"# Find test dataset rows with a minimum great circle distance less than the threshold\n",
|
1035 |
+
"close_pairs = []\n",
|
1036 |
+
"\n",
|
1037 |
+
"for i, test_point in test_data.iterrows():\n",
|
1038 |
+
" ra_test, dec_test = test_point['ra'], test_point['dec']\n",
|
1039 |
+
" distances = [(train_point, angular_separation_deg(ra_test, dec_test, train_point['ra'], train_point['dec'])) for i, train_point in train_data.iterrows()]\n",
|
1040 |
+
" closest_train_point, min_distance = min(distances, key=lambda x: x[1])\n",
|
1041 |
+
" if min_distance < threshold:\n",
|
1042 |
+
" close_pairs.append((test_point, closest_train_point, min_distance))\n",
|
1043 |
+
"\n",
|
1044 |
+
"close_pairs_summary = [\n",
|
1045 |
+
" {\n",
|
1046 |
+
" \"test_image_id\": test_point['image_id'],\n",
|
1047 |
+
" \"test_ra\": test_point['ra'],\n",
|
1048 |
+
" \"test_dec\": test_point['dec'],\n",
|
1049 |
+
" \"train_image_id\": closest_train_point['image_id'],\n",
|
1050 |
+
" \"train_ra\": closest_train_point['ra'],\n",
|
1051 |
+
" \"train_dec\": closest_train_point['dec'],\n",
|
1052 |
+
" \"min_distance_deg\": min_distance\n",
|
1053 |
+
" }\n",
|
1054 |
+
" for test_point, closest_train_point, min_distance in close_pairs\n",
|
1055 |
+
"]\n",
|
1056 |
+
"\n",
|
1057 |
+
"# Print the results\n",
|
1058 |
+
"result = \"Success\"\n",
|
1059 |
+
"for pair in close_pairs_summary:\n",
|
1060 |
+
" print(pair)\n",
|
1061 |
+
" result = \"FAIL\"\n",
|
1062 |
+
" \n",
|
1063 |
+
"print(f\"Done. result is {result}\")"
|
1064 |
+
]
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"cell_type": "code",
|
1068 |
+
"execution_count": null,
|
1069 |
+
"id": "93cf2978-0799-4d6c-93ec-921f4f41e10c",
|
1070 |
+
"metadata": {},
|
1071 |
+
"outputs": [],
|
1072 |
+
"source": [
|
1073 |
+
"sdss_test.to_json('full_test1.jsonl', orient='records', lines=True)\n",
|
1074 |
+
"sdss_train.to_json('full_train1.jsonl', orient='records', lines=True)"
|
1075 |
+
]
|
1076 |
+
}
|
1077 |
+
],
|
1078 |
+
"metadata": {
|
1079 |
+
"kernelspec": {
|
1080 |
+
"display_name": "Python 3 (ipykernel)",
|
1081 |
+
"language": "python",
|
1082 |
+
"name": "python3"
|
1083 |
+
},
|
1084 |
+
"language_info": {
|
1085 |
+
"codemirror_mode": {
|
1086 |
+
"name": "ipython",
|
1087 |
+
"version": 3
|
1088 |
+
},
|
1089 |
+
"file_extension": ".py",
|
1090 |
+
"mimetype": "text/x-python",
|
1091 |
+
"name": "python",
|
1092 |
+
"nbconvert_exporter": "python",
|
1093 |
+
"pygments_lexer": "ipython3",
|
1094 |
+
"version": "3.10.13"
|
1095 |
+
}
|
1096 |
+
},
|
1097 |
+
"nbformat": 4,
|
1098 |
+
"nbformat_minor": 5
|
1099 |
+
}
|
utils/jwst_filtering.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|