SBI-16-3D / utils /create_splits.py
rithwiks's picture
added read pattern to splits. updated version
0733e6e
raw
history blame
3.66 kB
import os
import random
from glob import glob
import json
from huggingface_hub import hf_hub_download
from tqdm import tqdm
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
import datasets
from datasets import DownloadManager
from fsspec.core import url_to_fs
def get_fits_footprint(fits_path):
"""
Process a FITS file to extract WCS information and calculate the footprint.
Parameters:
fits_path (str): Path to the FITS file.
Returns:
tuple: A tuple containing the WCS footprint coordinates.
"""
with fits.open(fits_path) as hdul:
hdul[1].data = hdul[1].data[0, 0]
wcs = WCS(hdul[1].header)
shape = sorted(tuple(wcs.pixel_shape))[:2]
footprint = wcs.calc_footprint(axes=shape)
coords = list(footprint.flatten())
return coords
def calculate_pixel_scale(header):
"""
Calculate the pixel scale in arcseconds per pixel from a FITS header.
Parameters:
header (astropy.io.fits.header.Header): The FITS header containing WCS information.
Returns:
Mean of the pixel scales in x and y.
"""
# Calculate the pixel scales in arcseconds per pixel
pixscale_x = header.get('CDELT1', np.nan)
pixscale_y = header.get('CDELT2', np.nan)
return np.mean([pixscale_x, pixscale_y])
def make_split_jsonl_files(config_type="tiny", data_dir="./data",
outdir="./splits", seed=42):
"""
Create jsonl files for the SBI-16-3D dataset.
config_type: str, default="tiny"
The type of split to create. Options are "tiny" and "full".
data_dir: str, default="./data"
The directory where the FITS files are located.
outdir: str, default="./splits"
The directory where the jsonl files will be created.
seed: int, default=42
The seed for the random split.
"""
random.seed(seed)
os.makedirs(outdir, exist_ok=True)
fits_files = glob(os.path.join(data_dir, "*.fits"))
random.shuffle(fits_files)
if config_type == "tiny":
train_files = fits_files[:2]
test_files = fits_files[2:3]
elif config_type == "full":
split_idx = int(0.8 * len(fits_files))
train_files = fits_files[:split_idx]
test_files = fits_files[split_idx:]
else:
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")
def create_jsonl(files, split_name):
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
with open(output_file, "w") as out_f:
for file in tqdm(files):
#print(file, flush=True, end="...")
with fits.open(file, memmap=False) as hdul:
image_id = os.path.basename(file).split(".fits")[0]
ra = hdul["SCI"].header.get('CRVAL1', 0)
dec = hdul["SCI"].header.get('CRVAL2', 0)
pixscale = calculate_pixel_scale(hdul["SCI"].header)
footprint = get_fits_footprint(file)
read_pattern = hdul[0].header.get('READPATT', 0)
# get the number of groups per int
ntimes = hdul["SCI"].data.shape[1]
item = {"image_id": image_id, "image": file, "ra": ra, "dec": dec,
"pixscale": pixscale, "ntimes": ntimes, "read_pattern": read_pattern, "footprint": footprint}
out_f.write(json.dumps(item) + "\n")
create_jsonl(train_files, "train")
create_jsonl(test_files, "test")
if __name__ == "__main__":
make_split_jsonl_files("tiny")
make_split_jsonl_files("full")